精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.
分析:(1)用待定系数法先设函数f(x)的解析式,再由已知条件求解未知量即可
(2)只需保证对称轴落在区间内部即可
(3)转化为函数求最值问题,即可得到个关于变量m的不等式,解不等式即可
解答:解:(1)由已知∵f(x)是二次函数,且f(0)=f(2)
∴对称轴为x=1
又最小值为1
设f(x)=a(x-1)2+1
又f(0)=3
∴a=2
∴f(x)=2(x-1)2+1=2x2-4x+3
(2)要使f(x)在区间[2a,a+1]上不单调,则2a<1<a+1
0<a<
1
2

(3)由已知2x2-4x+3>2x+2m+1在[-1,1]上恒成立
化简得m<x2-3x+1
设g(x)=x2-3x+1
则g(x)在区间[-1,1]上单调递减
∴g(x)在区间[-1,1]上的最小值为g(1)=-1
∴m<-1
点评:本题考查待定系数法和二次函数的单调性和最值,须注意恒成立问题的转化.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案