精英家教网 > 高中数学 > 题目详情
一个建设集团公司共有3n(n≥2,n∈N*)个施工队,编号分别为1,2,3,…3n.现有一项建设工程,因为工人数量和工作效率的差异,经测算:如果第i(1≤i≤3n)个施工队每天完成的工作量都相等,则它需要i天才能独立完成此项工程.
(1)求证第n个施工队用m(1≤m<n,m∈N*)天完成的工作量不可能大于第n+k(1≤k≤2n)个施工队用m+k天完成的工作量;
(2)如果该集团公司决定由编号为n+1,n+2,…,3n共2n个施工队共同完成,求证它们最多不超过两天即可完成此项工作.
证明:(1)依题意,第i(1≤i≤3n)个施工队的工作效率为
1
i
…1分
故本题即是证明当1≤m<n,m∈N*且1≤k≤2n时,
m
n
m+k
n+k
…3分
m
n
-
m+k
n+k
=
mn+mk-mn-nk
n(n+k)
=
(m-n)k
n(n+k)

当1≤m<n,m∈N*且1≤k≤2n时,
(m-n)k
n(n+k)
<0
显然成立,故命题得证.…6分
(2)要证明此命题,即是证明2(
1
n+1
+
1
n+2
+…+
1
3n
)>1(n≥2,n∈N*),
也就是证明:
1
n+1
+
1
n+2
+…+
1
3n
1
2
(n≥2,n∈N*).…9分
[法一]:利用数学归纳法:
(1)当n=2时,左边=
1
3
+
1
4
+
1
5
+
1
6
1
2
,不等式成立.
(2)假设当n=k(k≥2,k∈N*)时不等式成立.
1
k+1
+
1
k+2
+…+
1
3k
1
2

则当n=k+1时,
1
?k+1?+1
+
1
?k+1?+2
+…+
1
3k
+
1
3k+1
+
1
3k+2
+
1
3k+3
=
1
k+1
+
1
k+2
+…+
1
3k
+(
1
3k+1
+
1
3k+2
+
1
3k+3
-
1
k+1
)>
1
2
+(3×
1
3k+3
-
1
k+1
)=
1
2

所以当n=k+1时不等式也成立,
由(1),(2)知原不等式对一切n≥2,n∈N*均成立.…14分
[法二]利用放缩法:
∵n≥2,
1
n+1
+
1
n+2
+…+
1
3n
1
3n
+
1
3n
+…+
1
3n
=
2
3
1
2

1
n+1
+
1
n+2
+…+
1
3n
1
2
(n≥2,n∈N*).…14分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a,b为正数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明:对任意n∈N成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4—5:不等式选讲
已知ab为正数,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明“如果m>n,那么m3>n3”,假设内容应是(  )
A.m3=n3B.m3<n3
C.m3=n3或m3<n3D.m3=n3且m3<n3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明1+2+3+ +n2,则当n=k+1时左端应在n=k的基础上加上(  )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+ +(k+1)2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列不等式



……
照此规律,第五个不等式为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(  )
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

同步练习册答案