精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,解不等式
(2)若,求实数的取值范围.

(1);(2).

解析试题分析:本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,利用零点分段法进行求解;第二问,利用函数的单调性求出最小值证明恒成立问题.
试题解析:(1)当时,,而
解得.        5分
(2)令,则
所以当时,有最小值
只需,解得,所以实数的取值范围为.         10分
考点:1.绝对值不等式的解法;2.恒成立问题;3.分段函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)若恒成立,求的最大值;
(2)若为常数,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A、B、C是直线上的不同三点,O是外一点,向量满足,记
(1)求函数的解析式;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

查看答案和解析>>

同步练习册答案