ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬SnÂú×ã¹Øϵʽ2Sn=Sn-1-(
1
2
)n-1+2
£¬a1=
1
2
£¨n¡Ý2£¬nΪÕýÕûÊý£©£®
£¨1£©Áîbn=2nan£¬ÇóÖ¤ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¶ÔÓÚÊýÁÐ{un}£¬Èô´æÔÚ³£ÊýM£¾0£¬¶ÔÈÎÒâµÄn¡ÊN*£¬ºãÓÐ|un+1-un|+|un-un-1|+¡­|u2-u1|¡ÜM³ÉÁ¢£¬³ÆÊýÁÐ{un}Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£¬Ö¤Ã÷£ºÊýÁÐ{an}Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
·ÖÎö£º£¨1£©ÕûÀíÌâÉèµÝÍÆʽµÃSn=-an-(
1
2
)
n-1
+2
½ø¶ø±íʾ³öSn+1£¬½ø¶ø¸ù¾Ýan+1=Sn+1-Sn£¬ÇóµÃan+1ºÍanµÄµÝÍÆʽ£¬ÕûÀíµÃ2n+1an+1=2n•an+1£¬½ø¶ø¸ù¾Ýbn=2nan£¬ÇóµÃbn+1-bn=1£¬½ø¶ø¸ù¾ÝµÈ²îÊýÁеĶ¨ÒåÅжϳöÊýÁÐΪµÈ²îÊýÁУ®
£¨2£©¸ù¾Ý£¨1£©ÖÐÊýÁÐ{bn}µÄÊ×ÏîºÍ¹«²î£¬ÇóµÃÊýÁеÄͨÏʽ£¬½ø¶ø¸ù¾Ýbn=2nanÇóµÃan£®
£¨3£©°Ñan´úÈë|an+1-an|+|an-an-1|+¡­+|a2-a1|ÖУ¬ÀûÓÃÀûÓôíλÏë¼õ·¨ÇóµÃsn-
1
2
sn£¼
1
4
£¬½ø¶øÅжϳöÒÔSn¡Ü
1
2
ºã³ÉÁ¢£¬¸ù¾Ý¡°²î¾ø¶ÔºÍÓнçÊýÁС±µÄ¶¨Ò壬֤Ã÷³öÊýÁÐ{an}Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
½â´ð£º½â£º£¨1£©µ±n¡Ý2ʱ£¬Sn=-an-(
1
2
)n-1+2
£¬
Sn+1=-an+1-(
1
2
)
n
+2

ËùÒÔan+1=-an+1+an+(
1
2
)
n
£¬
¼´2an+1=an+(
1
2
)
n
£¬
ËùÒÔ2n+1an+1=2n•an+1
¼´bn+1-bn=1£¬£¨n¡Ý2£©£¬ÓÖb2-b1=22•2¡Áa1=1
ËùÒÔ£¬bn+1-bn=1£¬n¡ÊN+¼´{bn}ΪµÈ²îÊýÁÐ
£¨2£©b1=2¡Áa1=1 £¬   bn=1+(n-1)=n£¬   an=
n
2n

£¨3£©ÓÉÓÚ|an+1-an|+|an-an-1|+¡­+|a2-a1|=
n-1
2n+1
+
n-2
2n
+¡­+
0
22

sn-
1
2
sn£¼
1
4

ËùÒÔSn¡Ü
1
2
ºã³ÉÁ¢£¬
¼´[an]Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁеĵÝÍÆʽ£®¿¼²éÁËѧÉú×ۺϷÖÎöÎÊÌâºÍ´´ÔìÐÔ˼άµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬an£¾0£¬Sn=
a
2
n
+an
2
£¬n¡ÊN*£¬
£¨¢ñ£©ÇóSn£»
£¨¢ò£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2an+bn£¬Çóbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÎÄ¿ÆÌ⣩
£¨1£©ÔڵȱÈÊýÁÐ{an }ÖУ¬a5=162£¬¹«±Èq=3£¬Ç°nÏîºÍSn=242£¬ÇóÊ×Ïîa1ºÍÏîÊýnµÄÖµ£®
£¨2£©ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Sn=2n£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒÓÐSn=n2+n£¬ÔòÊýÁÐ{an}µÄͨÏîan=
2n
2n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Sn=2n-1£¬Ôòa10=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•³çÃ÷ÏØһģ£©ÒÑÖªSnÊÇÊýÁÐ{an}Ç°nÏîºÍ£¬a1=1£¬an+1=an+2£¨n¡ÊN*£©£¬Ôò
lim
n¡ú¡Þ
nan
Sn
=
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸