精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
一个四棱锥的三视图如图所示,E为侧棱PC上一动点。

(1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等).
(2)点在何处时,面EBD,并求出此时二面角平面角的余弦值.
解:
(1)直观图如下:………………3分
该四棱锥底面为菱形,边长为2,其中角A为60度,顶点A在底面内的射影为底面菱形的
中心,四棱锥高为1。………………5分


(2)如图所示建立空间直角坐标系:
显然A、B、P
,得:
显然

所以当时,面BDE。………………9分
分别令为平面PBC和平面ABE的法向量,
,得
,得
可得:
显然二面角平面角为钝角,得其余弦值为。…………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在正三棱锥P—ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:
①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.
其中正确结论的序号是                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,正四棱锥中,AB=1,侧棱与底面所成角的正切值为.
(1)求二面角P-CD-A的大小.
(2)设点F在AD上,,求点A到平面PBF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
如图,已知四棱锥中,平面平面,平面平面
上任意一点,为菱形对角线的交点.
(Ⅰ)证明:平面平面
(Ⅱ)若,三棱锥的体积是四棱锥
的体积的,二面角的大小为,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间四个不同的点,在下列命题中,不正确的是(   )
A.若共面,则共面
B.若是异面直线,则是异面直线
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中, 的中点为的中点为,则异
面直线所成的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱,底面为正三角形,平面,,中点.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,⊥底面

(1)求证:⊥平面
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

矩形中,的中点,为边上一动点,则的最大值为(  )
A.B.C.D.1

查看答案和解析>>

同步练习册答案