精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和

1)计算

2)猜想的表达式,并用数学归纳法证明你的结论.

【答案】(1)依题设可得

2)猜想:

证明:时,猜想显然成立.

假设时,猜想成立,

.那么,当时,,即

,所以

从而.即时,猜想也成立.

故由,可知猜想成立.

【解析】试题分析:(1)采用赋值法,令,先求时,,求,然后令时,分别求;(2)根据(1)的结果,将前4项写成,观察前4项的形式,猜想,最后按数学归纳法证明.

试题解析:(1)依题设可得

2)猜想:

证明:n=1时,猜想显然成立.

假设n=k)时,猜想成立,即

那么,当n=k+1时,, 即

, 所以

从而

n=k+1时,猜想也成立. 故由,可知猜想成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),,且直线与曲线相切.

(1)求的值;

(2)若对内的一切实数,不等式恒成立,求实数的取值范围;

(3)求证: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列的前项和,且 .

(1)求数列的通项公式;

(2)若,求证:

(3)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的标准方程;

(2)若直线与椭圆相交于两点且.求证: 的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

180

女大学生

45

合计

200

(Ⅰ)根据题意完成表格;

(Ⅱ)是否有的把握认为愿意做志愿者工作与性别有关?

附:

0.5

0.40

0.25

0.15

0.10

0.455

0.708

1.323

.072

2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处切线与直线垂直(其中为自然对数的底数).

(1)求的解析式及单调减区间;

(2)是否存在常数,使得对于定义域的任意恒成立,若存在,求出 的值;若

不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两城相距100 km,在两地之间距Ax km处的D地建一核电站给AB两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.

(1)求x的取值范围;

(2)把月供电总费用y表示成x的函数;

(3)核电站建在距A城多远,才能使供电费用最小?

查看答案和解析>>

同步练习册答案