精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2mx+n
(m,n为常数),且关于x的方程f(x)=x-12有两个实数根x1=3,x2=4.
(1)求m,n的值;
(2)设t>1,试解关于x的不等式:(2-x)f(x)<(t+1)x-t.
分析:(1)欲求m,n的值,由题意得得:(m-1)x2+(n-12m)x-12n=0,根据一元二次方程根与系数的关系,可以求得两根之积和两根之和,即可得到一个关于m,n的方程,解方程即可求m,n的值.
(2)由(1)得f(x)=
x2
2-x
,从而关于x的不等式:(2-x)f(x)<(t+1)x-t.化简得即(x-t)(x-1)<0(x≠2),再对t进行分类讨论,即可得出不等式的解集.
解答:解:(1)由题意得:x-12=
x2
mx+n

化简得:(m-1)x2+(n-12m)x-12n=0,
又关于x的方程f(x)=x-12有两个实数根x1=3,x2=4,
-
n-12m
m-1
=7
-
12n
m-1
=12

∴m=-1,n=2.
(2)此时,f(x)=
x2
2-x

∴关于x的不等式:(2-x)f(x)<(t+1)x-t.
即(2-x)
x2
2-x
<(t+1)x-t,
化简得:x2-(t+1)x+t<0(x≠2),
即(x-t)(x-1)<0(x≠2),
①当1<t≤2时,不等式的解集为:{x|1<x<t};
②当t>2时,不等式的解集为:{x|1<x<t且x≠2}.
点评:本题考查了一元二次方程根与系数的关系、不等式的解法,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案