精英家教网 > 高中数学 > 题目详情

【题目】已知圆,点是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时,点的轨迹为曲线

1求曲线的方程;

2若直线 与曲线相交于两点,为坐标原点,求面积的最大值.

【答案】(Ⅰ);(Ⅱ)

【解析】

试题(1)由垂直平分线的几何意义可知,满足椭圆的定义。(2)直线与椭圆组方程组,由韦达定理、弦长公式和点到直线的距离公式,可求得 .由,得及均值不等式可求得面积的最大值.

试题解析:(Ⅰ)∵点在线段的垂直平分线上,∴

,∴

∴曲线是以坐标原点为中心,为焦点,长轴长为的椭圆.

设曲线的方程为

,∴

∴曲线的方程为

(Ⅱ)设

联立消去,得

此时有

由一元二次方程根与系数的关系,得

∵原点到直线的距离

,得.又,∴据基本不等式,得

当且仅当时,不等式取等号.

面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

试估计该市市民正确书写汉字的个数的平均数与中位数;

已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;

(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;

(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生和4名女生中选出4人去参加座谈会,问:

1)如果4人中男生和女生各选2人,有多少种选法?

2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分),分为6组:,得到如图所示的频率分布直方图.

1)求的值;

2)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80,估计的概率;

3)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀”’,比赛成绩低于80分为非优秀”.请将下面的列联表补充完整,并判断是否有99.9%的把握认为比赛成绩是否优秀与性别有关”?

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,过F的直线与抛物线交于A,B两点,则的最小值是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是自然对数的底数,.

1)求的最值;

2)讨论方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

平面直角坐标系中,射线,曲线的参数方程为为参数),曲线的方程为;以原点为极点,轴的非负半轴为极轴建立极坐标系.曲线的极坐标方程为.

(Ⅰ)写出射线的极坐标方程以及曲线的普通方程;

(Ⅱ)已知射线交于,与交于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)当时,若恒成立,求实数b的范围.

查看答案和解析>>

同步练习册答案