精英家教网 > 高中数学 > 题目详情
已知数列{an},其中a1=1,a2=3,2an=an+1+an-1,(n≥2)记数列{an}的前n项和为Sn,数列{lnSn}的前n项和为Un
(Ⅰ)求Un
(Ⅱ)设Fn(x)=
eUN
2n(n!)2
x2n
Tn(x)=
n
i=1
F
1
k
(x)
,(其中Fk1(x)为Fk(x)的导函数),计算
lim
n→∞
Tn(x)
Tn+1(x)
分析:(Ⅰ)由递推关系知数列为等差数列,有等差数列前n项和公式求得Sn,进而求对数得解.
(Ⅱ)利用数列{lnSn}的前n项和Un,求得Fn(x),再利用导数公式求得Fn1(x),进而求和Tn(x),最后求极限得解.
解答:解:(Ⅰ)由题意,{an}是首项为1,公差为2的等差数列
前n项和Sn=
1+1+2(n-1)
2
•n=n2

lnSn=lnn2=2lnnUn=2(ln1+ln2+…+lnn)=2ln(n!)
(Ⅱ)Fn(x)=
eUn
2n(n!)2
x2n=
(n!)2
2n(n!)2
x2n=
x2n
2n
Fn′(x)=x2n-1Tn(x)=
n
k=1
Fk(x)=
n
k=1
x2k-1=
x(1-x2n)
1-x2
(0<x<1)
n(x=1)
x(1-x2n)
1-x2
(x>1)

lim
n→∞
Tn(x)
Tn+1(x)
=
lim
n→∞
1-x2n
1-x2n+2
=1
(0<x<1)
lim
n→∞
n
n+1
=1
(x=1)
lim
n→∞
(
1
x2n
)-1
(
1
x2n
)-x2
(x>1)
点评:本题主要考查等差数列的基础知识,以及对数运算、导数运算和极限运算的能力,是一道综合性较强的题目:注意:
(1)等差数列的判断方法要熟练.
(2)正确求导,求极限是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an
(3)设数列{nan}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅱ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,点(n,Sn)在以F(0,
14
)为焦点,以坐标原点为顶点的抛物线上,数列{bn}满足bn=2 an
(1)求数列{an},{bn}的通项公式;
(2)设cn=an×bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案