精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥ABCD的所有棱长均相等,EDC的中点,若点PAC中点,则直线PE与平面BCD所成角的正弦值为_____,若点Q在棱AC所在直线上运动,则直线QE与平面BCD所成角正弦值的最大值为_____

【答案】

【解析】

,则直线PE与平面BCD所成角等于直线与平面BCD所成角,过AAO⊥底面BCD,垂足为O,连结OD,则∠ADO是直线PE与平面BCD所成角,在中求解即得,是一个正四面体,当QA重合时,直线QE与平面BCD所成角正弦值取最大值,在中计算可得最大值.

连结BEAE,过AAO⊥底面BCD,垂足为O,连结OD

则∠ADO是直线PE与平面BCD所成角,

设三棱锥ABCD的所有棱长均相等,设棱长为2

DOBOBE

AO

sinADO

∴直线PE与平面BCD所成角的正弦值为

QA重合时,直线QE与平面BCD所成角正弦值取最大值,

此时直线QE与平面BCD所成角为∠AEOAE

∴直线QE与平面BCD所成角正弦值的最大值为:

sinAEO

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点是椭圆上任意三点,关于原点对称且满足.

(1)求椭圆的方程.

(2)若斜率为的直线与圆:相切,与椭圆相交于不同的两点,求时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .

(Ⅰ)写出的值,并用列举法写出集合;

(Ⅱ)用表示有限集合所含元素的个数,求的最小值;

(Ⅲ)有多少个集合对,满足,且?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, , ,点为棱的中点.

(1)证明: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求曲线处的切线方程;

2R上的单调递增函数,求a的取值范围;

3若函数对任意的实数,存在唯一的实数,使得成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对点的直线l分別交两点.

(1)的面积为,求直线l的方程;

(2)最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,为正项数列的前n项和,且.数列满足:.

1)求数列的通项公式;

2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列直线lx轴正半轴和y轴分别交于点QP,与椭圆分别交于点MN,各点均不重合且满足

求椭圆的标准方程;

,试证明:直线l过定点并求此定点.

查看答案和解析>>

同步练习册答案