分析 (1)函数f(x)在[-3,3]上单调递增,结合指数函数的性质及增函数的定义,可证得结论;
(2)结合(1)中函数的单调性和定义域,可将原不等式化为:$\left\{{\begin{array}{l}{-3≤m-1≤3}\\{-3≤1-2m≤3}\\{m-1<1-2m}\end{array}}\right.$,解得答案.
解答 解:(1)函数f(x)在[-3,3]上单调递增; …(2分)
下面证明:设x1,x2是[-3,3]上的任意两个值,且x1<x2,
则$f({x_1})-f({x_2})=\frac{{{2^{x_1}}-1}}{{{2^{x_1}}+1}}-\frac{{{2^{x_2}}-1}}{{{2^{x_2}}+1}}=(1-\frac{2}{{{2^{x_1}}+1}})-(1-\frac{2}{{{2^{x_2}}+1}})=\frac{{2({2^{x_1}}-{2^{x_2}})}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$…(6分)
因为-3≤x1<x2≤3,
所以${2^{x_1}}-{2^{x_2}}<0,又{2^{x_1}}+1>0,{2^{x_2}}+1>0$,
所以f(x1)-f(x2)<0,
即f(x1)<f(x2),
所以f(x)在[-3,3]上是单调增函数. …(10分)
(2)由(1)知f(x)在[-3,3]上为增函数
∴f(m-1)<f(1-2m)等价于:$\left\{{\begin{array}{l}{-3≤m-1≤3}\\{-3≤1-2m≤3}\\{m-1<1-2m}\end{array}}\right.$,…(14分)
∴$m∈[{-1,\frac{2}{3}})$
即解集为$[{-1,\frac{2}{3}})$…(16分)
点评 本题考查的知识点是函数单调性的判断,证明,与应用,是函数单调性的综合应用,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com