精英家教网 > 高中数学 > 题目详情
如图,在三棱锥A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,点E在BC上,且AE⊥AC.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求点B到平面ACD的距离.
(I)∵DA⊥平面ABC,AC?平面ABC,
∴AD⊥AC,…(2分)
∵AE⊥AC,AE、AD是平面ADE内的相交直线,
∴AC⊥平面ADE,
∵DE?平面ADE,∴AC⊥DE.…(6分)
(II)过B点作AC的垂线,垂足为F,
∵DA⊥平面ABC,BF?平面ABC,∴AD⊥BF
∵AC⊥BF,AC、AD是平面ACD内的相交直线,
∴BF⊥平面ACD,
因此BF的长为点B到平面ACD的距离,
在Rt△ABF中,AB=2,∠BAF=180°-120°=60°,
∴BF=ABsin60°=2×
3
2
=
3
,即点B到平面ACD的距离为
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在正方体中,分别

为棱的中点.(1)求证:∥平面
(2)求证:平面⊥平面
(3)如果,一个动点从点出发在正方体的
表面上依次经过棱上的点,
最终又回到点,指出整个路线长度的最小值并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面.下列四个命题中,正确的命题是             (   )
A.若所成的角相等,则B.若,则
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ABC的顶点ABC到平面的距离依次为abc,且点A与边BC在平面的两侧,则△ABC的重心G到平面的距离为                 (   )
A. B.C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在120°的二面角α-l-β内有一点P,P在平面α、β内的射影A、B分别落在半平面αβ内,且PA=3,PB=4,则P到l的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体ABCD-A′B′C′D′,AB=2,AA′=1,直线BD与平面AA′B′B所成角为30°,E为A′B′的中点.
(1)求异面直线AC与BE所成的角;
(2)求A点到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,用一副直角三角板拼成一直二面角A-BD-C,若其中给定AB=AD=2,∠BCD=90°,∠BDC=60°,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别是棱AA1和CC1的中点,G是A1C1的中点,求:
(1)点G到平面BFD1E的距离;
(2)四棱锥A1-BFD1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若A1AB=∠A1AD=600,且A1A=3,则A1C的长为______.

查看答案和解析>>

同步练习册答案