【题目】已知f(x)= (x∈R)且x≠﹣1,g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f[g(2)]的值;
(3)求f[g(x)]和g[f(x)]的解析式.
【答案】
(1)解:∵f(x)= (x∈R且x≠﹣1),g(x)=x2+2(x∈R)
∴f(2)= = ,g(2)=22+2=6,
∴f(2)= ,g(2)=6
(2)解:由(1)知g(2)=6,
∴f[g(2)]=f(6)= = ,
∴f[g(2)]=
(3)解:f[g(x)]=f(x2+2)= = ,
∴f[g(x)]= ,
g[f(x)]=g( )=( )2+2
【解析】(1)根据f(x)= (x∈R)且x≠﹣1,g(x)=x2+2(x∈R),把x=2分别代入即可得.(2)根据(1)中,把g(2)的值代入f(x)即可得.(3)将g(x)=x2+2代入f(x)即可得.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)求函数f(x)+g(x)的定义域;
(2)判断f(x)+g(x)的奇偶性,并说明理由;
(3)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1= 且an+1= .设bn+2=3 ,数列{cn}满足cn=anbn .
(1)求数列{bn}通项公式;
(2)求数列{cn}的前n项和Sn;
(3)若cn≤ +m﹣1对一切正整数n恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为奇函数.
(1)求实数a的值;
(2)试判断函数的单调性并加以证明;
(3)对任意的x∈R,不等式f(x)<m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式为( )
A. (n∈N*)
B.an=n(n﹣1)(n∈N*)
C.an=n﹣1(n∈N*)
D.an=2n﹣2(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|y= },B={y|y=x ,x∈R},C={x|mx<﹣1},
(1)求R(A∩B);
(2)是否存在实数m使得(A∩B)C成立,若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com