分析 (1)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.
(2)由(1)可知:DG是BC的垂直平分线,即可得到BG=$\frac{\sqrt{3}}{2}$.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到线段BF的长
解答 (1)证明:连接DE交BC于点G,
由弦切角定理得,∠ABE=∠BCE.(1分)
∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.(3分)
又∵DE⊥BE,∴DE是直径,∠DCE=90°.(4分)
∴△DBE≌△DCE,∴DC=DB.(5分)
(2)解:设DE与BC相交于点G,
由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线.(6分)
∵$BC=\sqrt{3}$,∴$BG=\frac{{\sqrt{3}}}{2}$.(7分)
连接BO,∵圆O的半径为1,∴∠BOG=60°,∠ABE=∠BCE=∠CBE=30°,
∴CF⊥BF.(9分),∴$BF=\frac{{\sqrt{3}}}{2}$.(10分)
点评 本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等等知识,需要较强的推理能力、分析问题和解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f($\frac{π}{3}$)<f($\frac{3π}{4}$)<f(π) | B. | f(π)<f($\frac{π}{3}$)<f($\frac{3π}{4}$) | C. | f(π)<f($\frac{3π}{4}$)<f($\frac{π}{3}$) | D. | f($\frac{3π}{4}$)<f($\frac{π}{3}$)<f(π) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com