【题目】已知直线过点,圆:,直线与圆交于两点.
() 求直线的方程;
()求直线的斜率的取值范围;
(Ⅲ)是否存在过点且垂直平分弦的直线?若存在,求直线斜率的值,若不存在,请说明理由.
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)见解析.
【解析】试题分析:()求出圆的圆心坐标,利用截距方程式求直线的方程;(Ⅱ)法1:联立直线与圆的方程,通过判别式求解的范围即可;法2:利用点到直线的距离公式与半径的关系,转化求解直线的斜率的取值范围;(Ⅲ)求出直线的斜率,利用垂直关系,判断是否存在直线方程.
试题解析:()设圆,圆心为,
故直线的方程为,即.
(Ⅱ)法1:直线的方程为,则
由得
由得
故.
法2:直线的方程为,即,
圆心为,圆的半径为1则圆心到直线的距离
因为直线与有交于两点,故,故
(Ⅲ)假设存在直线垂直平分于弦,此时直线过, ,则
,故的斜率,由()可知,不满足条件
所以,不存在存在直线垂直于弦。
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,一个焦点坐标是,离心率为.
(1)求椭圆的标准方程;
(2)过作直线交椭圆于两点, 是椭圆的另一个焦点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足: , , .
(1)求数列的通项公式;
(2)设数列的前项和为,且满足,试确定的值,使得数列为等差数列;
(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线, ,则下列说法正确的是( )
A. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为, .
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)在曲线上求一点,使它到直线: (为参数)的距离最短,写出点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为(为参数),设与的交点为,当变化时, 的轨迹为曲线.
(1)写出的普遍方程及参数方程;
(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为, 为曲线上的动点,求点到的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+alnx.
(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;
(2)若a=1,求函数f(x)在[1,e]上的最值;
(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com