精英家教网 > 高中数学 > 题目详情
已知2cosα+sinα=
5

(Ⅰ)求sinα的值;
(Ⅱ)若cos(α+β)=
-
10
10
,α,β均为锐角,求
(i)cosβ的值;   (ii)2α+β的值.
考点:两角和与差的余弦函数,同角三角函数基本关系的运用
专题:三角函数的求值
分析:(Ⅰ)由已知等式变形表示出sinα,代入sin2α+cos2α=1,求出cosα的值,即可求出sinα的值.
(Ⅱ)利用两角和差的余弦公式进行求解,注意要讨论角的范围.
解答: 解:(Ⅰ)由2cosα+sinα=
5
,得到sinα=
5
-2cosα  ①,
把①代入sin2α+cos2α=1,得:(
5
-2cosα)2+cos2α=1,
整理得:5cos2α-4
5
cosα+4=0,
即(
5
cosα-2)2=0,
解得:cosα=
2
5
5

则sinα=
5
-2×
2
5
5
=
5
5

(Ⅱ)∵cos(α+β)=
-
10
10
,α,β均为锐角,
∴sin(α+β)=
1-(-
10
10
)2
=
1-
10
100
=
3
10
10

则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=
-
10
10
×
2
5
5
+
3
10
10
×
5
5
=
2
10

cos(2α+β)=cos[(α+β)+α]=cos(α+β)cosα-sin(α+β)sinα=
-
10
10
×
2
5
5
-
3
10
10
×
5
5
=-
2
2

∵α,β均为锐角,cosα=
2
5
5
3
2
,∴0<α<
π
6

∵cos(α+β)=
-
10
10
∈(-
1
2
,0),
π
2
<α+β<π,
π
2
<2α+β<
7
6
π,
则2α+β=
4
点评:本题主要考查三角函数值的计算,利用两角和差的余弦公式以及同角的三角函数的关系式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=2px的焦点F作直线交抛物线于M,N两点,弦MN的垂直平分线交x轴于点H,若|MN|=40,则|HF|=(  )
A、14B、16C、18D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

8
-1
3x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
1
2n-1
,试证明:1≤a1+a2+…+an<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

生产的生产的商品A每件售价5元,年销售10万件.价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的价格最多提高多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是两个不平行的向量,实数x、y满足x
e1
+(5-y)
e2
=(y+1)
e1
+x
e2
,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,a2
1
2
a3
,a1成等比数列,则
a5+a6
a3+a4
的值为(  )
A、
1-
5
2
B、
5
+1
2
C、
3+
5
2
D、
3-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0)的图象与直线y=b(0<b<1)的三个相邻交点的横坐标分别为2,4,8,与直线y=-b的两个相邻交点的横坐标分别为x1,x2,若2<x1<x2<8,则f(x1)+f(x2)的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D、E分别是△ABC边AB、AC上的点,且BD=2AD,AE=2EC,点P是线段DE上的任意一点,若
AP
=x
AB
+y
AC
,则xy的最大值为
 

查看答案和解析>>

同步练习册答案