精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四边形ABCD中,AB⊥DA,CE= ,∠ADC= ;E为AD边上一点,DE=1,EA=2,∠BEC=

(1)求sin∠CED的值;
(2)求BE的长.

【答案】
(1)解:设∠CED=α.在△CED中,由余弦定理,得

CE2=CD2+DE2﹣2CD×DE×cos∠CDE,

得CD2+CD﹣6=0,解得CD=2(CD=﹣3舍去).

在△CED中,由正弦定理,得sin∠CED=


(2)解:由题设知α∈(0, ),所以cos

而∠AEB=

所以cos∠AEB=cos(

=cos cosα+sin sinα

=﹣ cosα+ sinα

=﹣

=

在Rt△EAB中,BE= =4


【解析】(1)设∠CED=α.在△CED中,由余弦定理,可解得CD=2,在△CED中,由正弦定理可解得sin∠CED的值.(2)由题设知α∈(0, ),先求cos ,而∠AEB= ,即可求cos∠AEB=cos( )的值.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cosβ= ,且α,β∈(0, ),求cos(α﹣β),sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCD为矩形,AB=3,BC=2,在矩形ABCD内随机取一点P,点P到矩形四个顶点的距离都大于1的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,ACCDAB=1, ,sin∠BCD.

(1)求BC边的长;

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,∠A、∠B、∠C成等差数列,且 .求:
(1)求∠A,∠C的大小.
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和为Sn , 且满足a1=1,an+1=2 +1,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数k,使ak , S2k1 , a4k成等比数列?若存在,求k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asin(2ωx+ )+ +b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是 ,最小值是
(1)求ω、a、b的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.

(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;

(2)设点为曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC上的点,B1C∥平面A1BD

(1)求证:BD⊥平面

(2)若,求三棱锥A-BCB1的体积.

查看答案和解析>>

同步练习册答案