分析 (Ⅰ)由题意方程求出a,b的值,结合隐含条件求得c,则椭圆离心率可求;
(Ⅱ)设出BC所在直线方程x=ty+1,与椭圆方程联立,把AB,AC的方程用含有A,B的坐标表示,再由MP⊥NP,利用数量积为0求解.
解答 解:(Ⅰ)由椭圆方程可得,a=2,b=$\sqrt{3}$,
从而椭圆的半焦距$c=\sqrt{{a}^{2}-{b}^{2}}=1$.
∴椭圆的离心率为$e=\frac{c}{a}=\frac{1}{2}$;
(Ⅱ)解:依题意,直线BC的斜率不为0,设其方程为x=ty+1.
将其代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,整理得(4+3t2)y2+6ty-9=0.
设B(x1,y1),C(x2,y2),
∴${y}_{1}+{y}_{2}=\frac{-6t}{4+3{t}^{2}}$,${y}_{1}{y}_{2}=\frac{-9}{4+3{t}^{2}}$.
直线AB的方程是$y=\frac{{y}_{1}}{{x}_{1}+2}(x+2)$,从而可得M(4,$\frac{6{y}_{1}}{{x}_{1}+2}$),
同理可得$N(4,\frac{6{y}_{2}}{{x}_{2}+2})$.
假设x轴上存在定点P(p,0)使得MP⊥NP,则有$\overrightarrow{PM}•\overrightarrow{PN}=0$.
∴$(p-4)^{2}+\frac{36{y}_{1}{y}_{2}}{({x}_{1}+2)({x}_{2}+2)}=0$.
将x1=ty1+1,x2=ty2+1代入上式,整理得$(p-4)^{2}+\frac{36{y}_{1}{y}_{2}}{{t}^{2}{y}_{1}{y}_{2}+3t({y}_{1}+{y}_{2})+9}=0$.
∴$(p-4)^{2}+\frac{36(-9)}{{t}^{2}(-9)+3t(-6t)+9(4+3{t}^{2})}=0$,即(p-4)2-9=0,
解得p=1,或p=7.
∴x轴上存在定点P(1,0)或P(7,0),使得MP⊥NP成立.
点评 本题考查椭圆的简单性质,考查直线和圆锥曲线位置关系的应用,训练了平面向量数量积在求解圆锥曲线问题中的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
PM2.5日均值m(微克/立方米) | 空气质量等级 |
m<35 | 一级 |
35≤m≤75 | 二级 |
m>75 | 超标 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a⊥α,α⊥β,则a∥β | B. | 若a∥α,b∥α,则a∥b | C. | 若a∥α,α⊥β,则a⊥β | D. | 若a⊥α,a∥β,则α⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com