精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(1)求数列{an}的通项公式.
(2)若bn=2knan,求数列{bn}的前n项和Tn
(3)设Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差数列{cn}的任一项cn∈Q∩R,其中c1是Q∩R中的最小数,110<c10<115,求{cn}的通项公式.
分析:(1)由点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,可解得Sn=n2+2n(n∈N*),再由通项与前n项和间的关系求得通项.
(2)用导数的几何意义,求得切线的斜率,再结合(1)求得bn=2knan=4•(2n+1)•4n.符合等差数列与等比数列相应项积的形式,用错位相减法求解.
(3)由“Q={x|x=2n+2,n∈N*},R={x|x=4n+2,n∈N*}”求得交集,再由“cn∈Q∩R,其中c1是Q∩R中的最小数”可求得c1=6.
最后由{cn}是公差是4的倍数求得c10=4m+6,则110<c10<115求解即可.
解答:解:(1)∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,
∴Sn=n2+2n(n∈N*),
当n≥2时,an=Sn-Sn-1=2n+1.
当n=1时,a1=S1=3满足上式,所以数列{an}的通项公式为an=2n+1(3分)
(2)由f(x)=x2+2x求导可得f′(x)=2x+2
∵过点Pn(n,Sn)的切线的斜率为kn
∴kn=2n+2.
bn=2knan=4•(2n+1)•4n
∴Tn=4×3×41+4×5×42+4×7×43++4×(2n+1)×4n
由①×4,得4Tn=4×3×42+4×5×43+4×7×44++4×(2n+1)×4n+1
①-②得:-3Tn=4[3×4+2×(42+43++4n)-(2n+1)×4n+1]=4[3×4+2×
42(1-4n-1)
1-4
-(2n+1)×4n+1]
Tn=
6n+1
9
4n+2-
16
9
.(8分)
(3)∵Q={x|x=2n+2,n∈N*},R={x|x=4n+2,n∈N*},∴Q∩R=R.
又∵cn∈Q∩R,其中c1是Q∩R中的最小数,
∴c1=6.
∵{cn}是公差是4的倍数,
∴c10=4m+6(m∈N*).
又∵110<c10<115,
110<4m+6<115
m∈N*
,解得m=27.
所以c10=114,
设等差数列的公差为d,则d=
c10-c1
10-1
=
114-6
9
=12

∴cn=6+(n+1)×12=12n-6,所以{cn}的通项公式为cn=12n-6(14分)
点评:本题主要考查数列与函数的综合运用,主要涉及了数列的通项与前n项和间的关系,错位相减法求和等问题,属中档题,是常考类型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案