7£®ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5cos¦È}\\{y=4sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ôò¹ýµã£¨3£¬0£©ÇÒбÂÊΪ$\frac{4}{5}$µÄÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏ߶ÎÖеãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-$\frac{3}{2}$£¬-$\frac{18}{5}$£©B£®£¨$\frac{4}{3}$£¬-$\frac{4}{3}$£©C£®£¨-2£¬-4£©D£®£¨$\frac{3}{2}$£¬-$\frac{6}{5}$£©

·ÖÎö Çó³öÇúÏßµÄÆÕͨ·½³Ì£¬ÓëÖ±Ïß·½³ÌÁªÁ¢£¬¼´¿ÉÇó³öÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏ߶ÎÖеãµÄ×ø±ê£®

½â´ð ½â£ºÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5cos¦È}\\{y=4sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1£¬
¹ýµã£¨3£¬0£©ÇÒбÂÊΪ$\frac{4}{5}$µÄÖ±ÏßlµÄ·½³ÌΪy=$\frac{4}{5}$£¨x-3£©£¬
´úÈë$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1£¬ÕûÀí¿ÉµÃx2-3x-8=0£¬
¡à¹ýµã£¨3£¬0£©ÇÒбÂÊΪ$\frac{4}{5}$µÄÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏ߶ÎÖеãµÄºá×ø±êΪ$\frac{3}{2}$£¬
´úÈëy=$\frac{4}{5}$£¨x-3£©£¬¿ÉµÃ×Ý×ø±êΪ-$\frac{6}{5}$£¬
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ln£¨1+x£©-$\frac{ax}{x+1}$£¨a£¾0£©£®
£¨1£©Èôx=1ÊǺ¯Êýf£¨x£©µÄÒ»¸ö¼«Öµµã£¬ÇóaµÄÖµ£»
£¨2£©Èôf£¨x£©¡Ý0ÔÚ[0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨3£©Ö¤Ã÷£º${£¨\frac{2017}{2016}£©^{2017}}$£¾e£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼×¡¢ÒÒÁ½¼ÒÍøÂ繫˾£¬1993ÄêµÄÊг¡Õ¼ÓÐÂʾùΪA£¬¸ù¾ÝÊг¡·ÖÎöÓëÔ¤²â£¬¼×¡¢ÒÒ¹«Ë¾×Ô1993ÄêÆðÖðÄêµÄÊг¡Õ¼ÓÐÂʶ¼ÓÐËùÔö¼Ó£¬¼×¹«Ë¾×Ô1993ÄêÆðÖðÄêµÄÊг¡Õ¼ÓÐÂʶ¼±ÈÇ°Ò»Äê¶à$\frac{A}{2}$£¬ÒÒ¹«Ë¾×Ô1993ÄêÆðÖðÄêµÄÊг¡Õ¼ÓÐÂÊÈçͼËùʾ£º
£¨I£©Çó¼×¡¢ÒÒ¹«Ë¾µÚnÄêÊг¡Õ¼ÓÐÂʵıí´ïʽ£»
£¨II£©¸ù¾Ý¼×¡¢ÒÒÁ½¼Ò¹«Ë¾ËùÔڵصÄÊг¡¹æÂÉ£¬Èç¹ûij¹«Ë¾µÄÊг¡Õ¼ÓÐÂʲ»×ãÁíÒ»¹«Ë¾Êг¡Õ¼ÓÐÂʵÄ20%£¬Ôò¸Ã¹«Ë¾½«±»ÁíÒ»¹«Ë¾¼æ²¢£¬¾­¼ÆË㣬2012Äê֮ǰ£¬²»»á³öÏּ沢¾ÖÃ棬ÊÔÎÊ2012ÄêÊÇ·ñ»á³öÏּ沢¾ÖÃ棬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³°àÒ»¸öѧϰС×éÔÚÒ»´ÎÊýѧʵ¼ù»î¶¯ÖУ¬²âµÃÒ»×éÊý¾Ý¹²5¸ö£¬Èç±í
xx1x2x3x45
y2.54.65.4n7.5
Èôx1+x2+x3+x4=10£¬¼ÆËãµÃ»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=2.5x-2.3£¬ÔònµÄֵΪ£¨¡¡¡¡£©
A£®9B£®8C£®7D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®º¯Êýf£¨x£©=4x3+ax2+bx+5ÔÚ£¨-¡Þ£¬-1£©ºÍ£¨$\frac{3}{2}$£¬+¡Þ£©µ¥µ÷µÝÔö£¬ÔÚ£¨-1£¬$\frac{3}{2}$£©µ¥µ÷µÝ¼õ£®
£¨1£©Çóº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çóf£¨x£©ÔÚ[-1£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬${a_2}=-\frac{1}{2}$£¬ÇÒÂú×ãSn£¬Sn+2£¬Sn+1³ÉµÈ²îÊýÁУ¬Ôòa3µÈÓÚ$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ò»×éÊý¾Ý¹²40¸ö£¬·ÖΪ6×飬µÚ1×éµ½µÚ4×éµÄƵÊý·Ö±ðΪ10£¬5£¬7£¬6£¬µÚ5×éµÄƵÂÊΪ0.1£¬ÔòµÚ6×éµÄƵÊýΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=£¨x+1£©lnx-a£¨x-1£©£¨a¡ÊR£©
£¨1£©µ±a=0ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôf£¨x£©¡Ý0¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®£¨1£©ÒÑÖª$cos£¨\frac{¦Ð}{6}-¦Á£©=\frac{{\sqrt{3}}}{2}$Çó$cos£¨\frac{5}{6}¦Ð+¦Á£©-{sin^2}£¨-¦Á+\frac{7¦Ð}{6}£©$µÄÖµ£®
£¨2£©Èôcos¦Á=$\frac{2}{3}$£¬¦ÁÊǵÚËÄÏóÏ޽ǣ¬Çó$\frac{sin£¨¦Á-2¦Ð£©+sin£¨-¦Á-3¦Ð£©cos£¨¦Á-3¦Ð£©}{cos£¨¦Ð-¦Á£©-cos£¨-¦Ð-¦Á£©cos£¨¦Á-4¦Ð£©}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸