精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆C:的左、右焦点分别为P为椭圆C上一点,且垂直于轴,连结并延长交椭圆于另一点,设

(1)若点的坐标为,求椭圆的方程;

(2)若,求椭圆的离心率的取值范围

【答案】(1) ;(2)

【解析】

1)由已知可得,将点代入椭圆方程,联立求得,则椭圆方程可求;(2)由轴,不妨设,设,由P在椭圆上,求得,结合,利用向量等式求得Q坐标,结合点Q在椭圆上,列式可得,结合的范围求椭圆C的离心率的取值范围.

(1)∵垂直于轴,且点的坐标为

,解得

∴椭圆C的方程为.

(2)∵轴,不妨设轴上方,,设

P在椭圆上,∴.解得,即

,由

解得,∴

∵点在椭圆上

,即

,从而

,∴

解得

∴椭圆C的离心率的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 在四棱锥中,为等边三角形, 平面平面,四边形是高为 的等腰梯形, 的中点.

1求证:

2到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过定点作直线与抛物线相交于两点.

1)已知,若点是点关于坐标原点的对称点,求面积的最小值;

2)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知.

(1)求数列的通项公式;

(2)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t为常数).

(1)若k=,t=,数列{an}是等差数列,求a1的值;

(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,且,数列满足,且

I)求数列的通项公式;

II)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.

(1)设,判断f(x)在上是否是有界函数.若是,说明理由,并写出f(x)所有上界的值的集合;若不是,也请说明理由.

(2)若函数g(x)=1+2x+a·4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系xOy中,设倾斜角为α的直线lt为参数)与曲线Cθ为参数)相交于不同的两点AB

)若α,求线段AB中点M的坐标;

)若|PA·PB|=|OP,其中P2),求直线l的斜率.

查看答案和解析>>

同步练习册答案