精英家教网 > 高中数学 > 题目详情
S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)=
 
考点:数列的求和
专题:等差数列与等比数列
分析:直接利用错位相减法求数列的和.
解答: 解:S=1+2x+3x2+4x3+…+nxn-1
xS=x+2x2+3x3+…+nxn
两式作差得:(1-x)S=1+x+x2+…+xn-1-nxn
∵x≠1且x≠0,
∴(1-x)S=
1-xn
1-x
-nxn

则S=
1-xn
(1-x)2
-
nxn
1-x

故答案为:
1-xn
(1-x)2
-
nxn
1-x
点评:本题考查了错位相减法求数列的和,关键是注意末项的符号,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

写出计算1+2+3+…+100的值的算法语句.(要求用循环结构)

查看答案和解析>>

科目:高中数学 来源: 题型:

使(3-2x-x2 -
1
4
有意义的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x≥0
x2,x<0
,则函数f(x)=f(f(x))的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F是抛物线C:y2=2px的焦点,点A(4,2)为抛物线于内一点,点P为抛物线上一动点,|PA|+|PF|的最小值为8
(1)求抛物线方程;
(2)在抛物线内过点F任意作互相垂直的两条弦MN和RS,问是否存在定点Q,使过点Q的动直线同时平分这两条弦,若存在,求出定点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2
3
sinxcosx,x∈R.
 (Ⅰ)求函数f(x)的最小正周期;  
 (Ⅱ)求函数f(x)在区间[-
π
6
π
4
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn≥2014?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品每件成本价80元,售价100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加
8
50
x
成,要求售价不能低于成本价.
(1)设该商店一天的营业额为y,试求y与x之间的函数关系式y=f(x),并写出定义域;
(2)若该商品一天营业额至少10260元,求商品定价应在哪个范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且有a1=2,3Sn=5an-an-1(n≥2)
(Ⅰ)求数列an的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案