解答:解:(Ⅰ)∵h'(x)=2x+
,又因为x>0,所以h'(x)>0在(0,+∞)上恒成立
即函数h(x)在(0,+∞)上是单调递增,(2分)
且h(1)=0(4分)
(Ⅱ)f'(x)=
=
(x>0)
由(Ⅰ)函数h(x)=x
2-1+lnx在(0,+∞)上是单调递增,且h(1)=0可知:
当0<x<1时,h(x)<0,所以有f'(x)<0;
当x>1时,h(x)>0,所以有f'(x)>0.(7分)
即函数f(x)在区间(0,1)上是减函数,在区间(1,+∞)上是增函数.(8分)
所以函数f(x)在x=1处取得最小值f(1)=0(9分)
(Ⅲ)不存在(10分)
∵函数f(x)在区间(1,+∞)上是增函数,
∴当满足1≤m<n,函数f(x)在[m,n]也是增函数.
若函数f(x)在[m,n]的值域也有[m,n],则有f(m)=m,f(n)=n,
也即函数y=f(x)与直线y=x在[1,+∞)上至少有两个不同的交点,
也即g(x)=f(x)-x在[1,+∞)上至少有两个不同的零点,
又g(x)=f(x)-x在区间[1,e)上是减函数,且g(1)=f(1)-1=-1,
当x∈[e,+∞)为增函数,且g(x)<0.
∴函数g(x)=f(x)-x在[1,+∞)上没有零点,
所以不存在实数m,n,满足1≤m<n,使得函数f(x)在[m,n]的值域也有[m,n].(13分)