精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-ax(a∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上最小值.
分析:(1)先确定函数f(x)的定义域,然后对函数f(x)求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减求出单调区间;
(2)分类讨论,确定函数的单调性,从而可确定函数的最值.
解答:解:(1)当a=2时,f(x)=lnx-ax,函数f(x)的定义域为(0,+∞),
求导函数可得f'(x)=
1
x
-2
①由f'(x)>0,x>0,得0<x<
1
2

②由f'(x)<0,x>0,得x>
1
2

故函数f(x)的单调递增区间为(0,
1
2
),单调减区间是(
1
2
,+∞).…(8分)
(2)①当
1
a
≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,
∴f(x)的最小值是f(2)=ln2-2a.…(10分)
②当
1
a
2,即a≤
1
2
时,函数f(x)在区间[1,2]上是增函数,
∴f(x)的最小值是f(1)=-a.…(12分)
③当1<
1
a
2,即
1
2
<a<1
时,函数f(x)在[1,
1
a
]上是增函数,在[
1
a
,2]上是减函数.
又f(2)-f(1)=ln2-a,
∴当
1
2
<a<ln2
时,最小值是f(1)=-a;
当ln2≤a<1时,最小值为f(2)=ln2-2a.…(15分)
综上可知,当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.…(16分)
点评:本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,考查函数的最值,正确求导,确定分类标准是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案