(本题12分)在平面直角坐标系O中,直线与抛物线=2相交于A、B两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
1)利用坐标运算
(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).”,该命题是假命题.
解析试题分析:1)解法一:设过点T(3,0)的直线l交抛物线=2x于点A(x1,y1)、B(x2,y2).
当直线l的斜率不存在时,直线l的方程为x=3,此时,直线l与抛物线相交于A(3,)、B(3,-),∴……3分
当直线l的斜率存在时,设直线l的方程为y=k(x-3),其中k≠0.
得ky2-2y-6k=0,则y1y2=-6. 又∵x1=y12, x2=y22,
∴=x1x2+y1y2=="3."
综上所述, 命题“......”是真命题.
解法二:设直线l的方程为my =x-3与="2x" 联立得到y2-2my-6=0 =x1x2+y1y2
=(my1+3) (my2+3)+ y1y2=(m2+1) y1y2+3m(y1+y2)+9=(m2+1)× (-6)+3m×2m+9=3
(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).”,该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为y = (x+1),而T(3,0)不在直线AB上.……12分
考点:本题主要考查抛物线的几何性质,直线好抛物线的位置关系,命题的概念及四种命题的关系,向量的坐标运算。
点评:本题以命题的真假探究为背景,重点考查直线与抛物线的位置关系,此类问题,往往通过联立方程组,应用韦达定理,实现整体代换,简化解题过程。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
△ABC中,已知三个顶点的坐标分别是A(,0),B(6,0),C(6,5),
(1)求AC边上的高线BH所在的直线方程;
(2)求的角平分线所在直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:,若点在直线AD上.
(1)求点A的坐标及矩形ABCD外接圆的方程;
(2)过点的直线与ABCD外接圆相交于A、B两点,若,求直线m的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(10分)如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线//AB,与AC,BC依次交于E,F,.求所在的直线方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com