精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的奇函数上单调递减,且,则的值(  )

A. 恒为正B. 恒为负C. 恒为0D. 无法确定

【答案】B

【解析】

由题意利用函数的单调性和奇偶性的性质,求得f(a)+f(b)+f(c)<0,可得结论.

定义在R上的奇函数f(x)在[0,+∞)上单调递减,

故函数f(x)在(﹣∞,0]上也单调递减,故f(x)在R上单调递减.

根据a+b>0,b+c>0,a+c>0,

可得a>﹣b,b>﹣c,c>﹣a,∴f(a)<f(﹣b),f(b)<f(﹣c),f(c)<f(﹣a),

∴f(a)+f(b)+f(c)<f(﹣b)+f(﹣c)+f(﹣a)=﹣f(a)﹣f(b)﹣f(c),

∴f(a)+f(b)+f(c)<0,

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆b2x2+a2y2a2b2ab0)的两个焦点分别是F1F2,等边三角形的边AF1AF2与该椭圆分别相交于BC两点,且2|BC||F1F2|,则该椭圆的离心率等于(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆C过定点F20),且与直线x=-2相切,圆心C的轨迹为E

1)求圆心C的轨迹E的方程;

2)若直线lEPQ两点,且线段PQ的中心点坐标(11),求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A是圆Ox2+y216上的任意一点,l是过点A且与x轴垂直的直线,B是直线lx轴的交点,点Q在直线l上,且满足4|BQ|3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C

1)求曲线C的方程;

2)已知直线ykx2k≠0)与曲线C交于MN两点,点M关于y轴的对称点为M,设P0,﹣2),证明:直线MN过定点,并求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.

1)证明这些等边圆柱的体积从大到小排成一个等比数列;

2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,两个焦点与短轴一个顶点构成等腰直角三角形,过点且与x轴不重合的直线l与椭圆交于M,N不同的两点.

(Ⅰ)求椭圆P的方程;

(Ⅱ)当AM与MN垂直时,求AM的长;

(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为2分别为的中点,交于点,将沿折起到的位置,使平面平面

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率为

(1)求椭圆的标准方程;

(2)设椭圆的左,右焦点分别为左,右顶点分别为,点,为椭圆上位于轴上方的两点,且,记直线的斜率分别为,若,求直线的方程.

查看答案和解析>>

同步练习册答案