【题目】在平面直角坐标系中,曲线(为参数),将曲线上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线;以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线和直线的直角坐标方程;
(2)已知,设直线与曲线交于不同的、两点,求的值.
【答案】(1),;(2).
【解析】
(1)利用两角差的正弦公式将直线的极坐标方程变形为,由此可将直线的极坐标方程化为直角坐标方程,利用伸缩变换可得出曲线的参数方程,消参后可得出曲线的直角坐标方程;
(2)可知点在直线上,且该直线的倾斜角为,可得出直线的参数方程为(为参数),然后将直线的参数方程与曲线的直角坐标方程联立,得到关于的一元二次方程,利用韦达定理可求出.
(1)直线的极坐标方程为,化简得,
化为直角坐标方程为.
将曲线(为参数)上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线,则曲线的参数方程为(为参数),
消参后得,
因此,曲线的直角坐标方程为;
(2)由题意知在直线上,又直线的倾斜角为,
所以直线的参数方程为(为参数),
设、对应的参数分别为、,
将直线的参数方程代入中,得.
因为在内,所以恒成立,由韦达定理得,
所以.
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论:①若,则;②的图象关于点对称;③函数在上单调递增;④的图象向右平移个单位长度后所得图象关于轴对称.其中所有正确结论的编号是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月1日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):
全月应缴纳所得额 | 税率 |
不超过3000元的部分 | |
超过3000元至12000元的部分 | |
超过12000元至25000元的部分 |
国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:
项目 | 每月税前抵扣金额(元) | 说明 |
子女教育 | 1000 | 一年按12月计算,可扣12000元 |
继续教育 | 400 | 一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600元 |
大病医疗 | 5000 | 一年最高抵扣金额为60000元 |
住房贷款利息 | 1000 | 一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除 |
住房租金 | 1500/1000/800 | 扣除金额需要根据城市而定 |
赡养老人 | 2000 | 一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上 |
老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734元.若2019年11月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,,点为椭圆的右顶点,直线与椭圆相交于不同于点的两个点、.
(1)求椭圆的标准方程;
(2)当时,求面积的最大值;
(3)若,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】太极图被称为“中华第一图”.从孔庙大成殿梁柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到韩国国旗,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为,设点,则的最大值与最小值之差是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若对任意的,恒成立,求实数的取值范围;
(2)若的最小值为,求实数的值;
(3)若对任意实数、、,均存在以、、为三边边长的三角形,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租车公司给出的财务报表如下:
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费(元) | 14.82 | 14.49 | |
平均每单里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为人,以后每天人数比前一天都增加,天后捐步人数稳定在第天的水平,假设此项活动的启动资金为万元,每位捐步者每天可以使公司收益元(以下人数精确到人,收益精确到元).
(1)求活动开始后第天的捐步人数,及前天公司的捐步总收益;
(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区欲建造同一水平面上的两条圆形景观步道、(宽度忽略不计),已知,(单位:米),要求圆与、分别相切于点、,与、分别相切于点、,且.
(1)若,求圆、圆的半径(结果精确到米);
(2)若景观步道、的造价分别为每米千元、千元,如何设计圆、圆的大小,使总造价最低?最低总造价为多少(结果精确到千元)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com