精英家教网 > 高中数学 > 题目详情
12.△ABC的内角A、B、C所对边的长为a、b、c,且2bsinA=a,若△ABC为锐角三角形,则角B的大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.

解答 解:由a=2bsinA,
根据正弦定理得sinA=2sinBsinA,所以sinB=$\frac{1}{2}$,
由△ABC为锐角三角形得B=$\frac{π}{6}$.
故选:B.

点评 本题主要考查正弦定理的应用.在解三角形中正余弦定理应用的很广泛,一定要熟练掌握公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2A+cos2C-$\sqrt{3}$sinAsinC=1+cos2B.
(Ⅰ)求B;
(Ⅱ)设函数f(x)=$\sqrt{3}$sinxcosx-cos2x(x∈R),求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x2-2ax+a-2.(a∈R).
(1)当a=-1时,求不等式f(x)<0的解集;
(2)解关于x的不等式f(x)>f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|kπ+$\frac{π}{3}$≤x≤kπ+$\frac{π}{2}$,k∈z},B={x|4-x2≥0},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2012}$的值的一个程序框图,则判断框内应填入的条件是(  ) 
A.i≤1 005?B.i>1 005?C.i≤1 006?D.i>1 006?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x、y满足约束条件$\left\{\begin{array}{l}2x+y-6≥0\\ x+2y-6≤0\\ y≥0\end{array}\right.$,则目标函数z=2x+y的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(x+1)1n(x+1),g(x)=$\frac{a}{2}$(x2-2x).
(1)函数h(x)=f(ex-1)+g′(ex),x∈[-1,2].求函数h(x)的最小值;
(2)对任意x∈[2,+∞),都有f(x-2)+g(x)≤0.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC中,AB=$\sqrt{3}$,AC=2,$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,则$\overrightarrow{AO}$•$\overrightarrow{BC}$=(  )
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个袋子中有号码为1,2,3,4大小相同的4个小球,现从中任意取出一个球,取出后再放回,然后再从
袋中任取一个球,则取得两个号码之和为5的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{16}$

查看答案和解析>>

同步练习册答案