阅读:
已知、,,求的最小值.
解法如下:,
当且仅当,即时取到等号,
则的最小值为.
应用上述解法,求解下列问题:
(1)已知,,求的最小值;
(2)已知,求函数的最小值;
(3)已知正数、、,,
求证:.
(1)9;(2)18;(3)证明见解析.
解析试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有
,因此有
此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有 ,从而最终得出.
(1), 2分
而,
当且仅当时取到等号,则,即的最小值为. 5分
(2), 7分
而,,
当且仅当,即时取到等号,则,
所以函数的最小值为. 10分
(3)
当且仅当时取到等号,则. 16分
考点:阅读材料问题,“1”的代换,基本不等式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com