精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面是正方形,侧面底面,且,分别为的中点.

(1)求证:平面

(2)在线段上是否存在点,使得二面角的余弦值为,若存在,请求出点的位置;若不存在,请说明理由.

【答案】(1)证明见解析;(2)存在,的中点.

【解析】

试题分析:(1)根据题意可连接,与相交于点,易证,根据线面平行的判定定理即可证得平面;(2)取的中点,连接,可证得平面,以为原点,分别以射线轴,轴和轴建立空间直角坐标系,不妨设

,分别求出平面和平面的法向量,根据二面角的求法得到的方程,求出其值,若满足,则存在,否则不存在.

试题解析:(1)证明:连接,由正方形性质可知,相交于点

所以,在中,.........................1分

平面平面.....................3分

所以平面...................4分

(2)取的中点,连接

因为,所以

又因为侧面底面,交线为,所以平面

为原点,分别以射线轴,轴和轴建立空间直角坐标系,

,不妨设................ 6分

则有,假设在上存在点

.............. 7分

因为侧面底面,交线为,且底面是正方形,

所以平面,则

所以,即平面的一个法向量为.............. 8分

设平面的法向理为,由,亦即,可取....................9分

所以...................... 10分

解得(舍去)................................11分

所以线段上存在点,且的中点,使得二面角的余弦值为.......12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若

(1)求函数的解析式;

(2)画出函数的图象,并说出函数的单调区间;

(3)若,求相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计3名男生报此所大学的概率都是,这1名女生报此所大学的概率是且这4人报此所大学互不影响。

(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;

(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题实数满足 ;命题实数满足.

(1)当时,若“”为真,求实数的取值范围;

(2)若“非”是“非”的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为,求的分布列和数学期望.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(1)f(x)的定义域为 (∞,+∞)求实数a的范围;

(2)f(x)的值域为 [0, +∞), 求实数a的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处.点M,N分别在边AB,AD上. (Ⅰ)当点M,N分别是边AB,AD的中点时,求∠MCN的余弦值;

(Ⅱ)由于村建规划及保护生态环境的需要,要求△AMN的周长为2千米,请探究∠MCN是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.

(I)求f(0)的值和实数m的值;

(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.

查看答案和解析>>

同步练习册答案