精英家教网 > 高中数学 > 题目详情
17.以下判断正确的是(  )
A.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
B.命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.命题“在锐角△ABC中,有 sinA>cosB”为真命题
D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充分不必要条件

分析 根据充要条件的定义,可判断A,D;写出原命题的否定,可判断B;根据诱导公式和三角函数的单调性,判断C.

解答 解:函数y=f(x)为R上可导函数,则f′(x0)=0时,x0不一定是函数f(x)极值点,
x0为函数f(x)极值点时,f′(x0)=0成立,
综上f′(x0)=0是x0为函数f(x)极值点的必要不充分条件,故A错误;
命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1≥0”,故B错误;
命题“在锐角△ABC中,A+B>$\frac{π}{2}$,则A>$\frac{π}{2}$-B,故sinA>sin($\frac{π}{2}$-B)=cosB”,故C正确;
“b=0”时,“函数f(x)=ax2+bx+c是偶函数”,“函数f(x)=ax2+bx+c是偶函数”时,“b=0”,
综上“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件,故D错误;
故选:C

点评 本题以命题的真假判断和应用为载体,考查了充要条件的定义,特称命题的否定,诱导公式和三角函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x,g(x)=-$\frac{4}{x}$,p(x)=f(x)-g(x),求y=p(x)的函数表达式.并写出y=p(x)的单凋递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=4x3+x-8,用二分法求方程4x3+x-8=0在x∈(1,3)内近似解的过程中,通过计算得:f(2)>0,f(1.5)>0,则方程的解落在区间(  )
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集U是实数集R,M={x|x<1},N={x|0<x<2}都是U的子集,则图中阴影部分所表示的集合是(  )
A.{x|1≤x<2}B.{x|0<x<1}C.{x|x≤0}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2+ax+b的零点是-3和1,则函数g(x)=log2(ax+b)的零点是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若${log_a}\frac{4}{5}<1$,则实数a的取值范围是(  )
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})$∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.
(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=5$(其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列命题:
(1)函数$f(x)=\root{3}{{{x^4}-{x^3}}}$和$g(x)=x•\root{3}{x-1}$是同一个函数;
(2)若函数$f(x)={log_{\frac{1}{2}}}({x^2}-4x+3)$,则函数f(x)的单调递减区间是[2,+∞);
(3)对于函数f(x),x∈R,“y=|f(x)|的图象关于y轴对称”“是y=f(x)是奇函数”的必要不充分条件;
(4)已知函数f(x)=a|log2x|+1(a≠0),定义函数$F(x)=\left\{{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}}\right.$,则函数F(x)是偶函数且当a>0时,函数y=F(x)-2有四个零点.
其中正确命题的个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用单调性定义证明函数f(x)=$\frac{1}{x-1}$在区间(1,+∞)上是减函数.

查看答案和解析>>

同步练习册答案