精英家教网 > 高中数学 > 题目详情
15.已知集合$A=\left\{{\left.x\right|y=\frac{1}{{\sqrt{-3x-{x^2}}}}}\right\}$,集合$B=\left\{{\left.x\right|\frac{1}{8}<{2^x}<2}\right\}$.
(1)求A∩B;
(2)若集合C={x|2a≤x≤a+1},且(A∩B)?C,求实数a的取值范围.

分析 (1)先把集合A,B解出来,即可求A∩B;
(2)对集合C进行讨论,然后求解.

解答 解:(1)解A=(-3,0),B=(-3,1),
所以A∩B=(-3,0)
(2)若C=∅时,2a>a+1,即a>1;
  若C≠∅时,$\left\{\begin{array}{l}{2a≤a+1}\\{2a>-3}\\{a+1<0}\end{array}\right.$,解得-$\frac{3}{2}<a<-1$     
  综上:$-\frac{3}{2}<a<-1$或a>1.

点评 本题主要考查集合的自交并的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.过点(4,6)且与圆(x-2)2+(y-3)2=4相切的直线方程是5x-12y+77=0或x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.圆C的圆心C(1,2),该圆上一个动点P到直线l:x+y+1=0的距离的最小值为$\sqrt{2}$.
(1)求圆C的标准方程;
(2)过点C作两条互相垂直的直线与直线l交于A,B两个点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),数列{an}满足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2.
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=$\frac{1}{a_1a_2}$+$\frac{1}{a_2a_3}$+$\frac{1}{a_3a_4}$+…+$\frac{1}{a_na_{n+1}}$,若Sn≥3t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)$\root{4}{{{{(3-π)}^4}}}+{({0.008})^{-\frac{1}{3}}}-{({0.25})^{\frac{1}{2}}}×{({\frac{1}{{\sqrt{2}}}})^{-4}}$;
(2)$\frac{1}{2}lg\frac{32}{49}-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N*
(1)求an
(2)求证:$\frac{a_1}{{({{a_1}+1})({{a_2}+1})}}+\frac{a_2}{{({{a_2}+1})({{a_3}+1})}}+…+\frac{a_n}{{({{a_n}+1})({{a_{n+1}}+1})}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数$f(x)=|sinx+\frac{2}{3+sinx}+t|(x,t∈R)$最大值记为g(t),则函数g(t)的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.顶点在原点、坐标轴为对称轴的抛物线,过点(-1,2),则它的方程是(  )
A.y=2x2或y2=-4xB.y2=-4x或x2=2yC.x2=-$\frac{1}{2}$yD.y2=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,点E、F在PC、AC上,PE=$\frac{1}{4}$PC.
(I)若EF∥平面PBD,求的$\frac{AF}{AC}$的值;
(II)若PA=AB,三棱锥C-BDE的体积为8,求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案