A. | -log20172016 | B. | -1 | C. | log20172016-1 | D. | 1 |
分析 求出函数y=xn+1(n∈N*)的导数,可得切线的斜率,由点斜式方程可得在(1,1)处的切线方程,取y=0求得xn,然后利用对数的运算性质得答案.
解答 解:由y=xn+1,得y′=(n+1)xn,∴y′|x=1=n+1,
∴曲线y=xn+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1),
取y=0,得xn=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴x1x2…x2016=$\frac{1}{2}$×$\frac{2}{3}$×…×$\frac{2016}{2017}$=$\frac{1}{2017}$,
则log2017x1+log2017x2+…+log2017x2016=log2017(x1x2…x2016)
=log2017$\frac{1}{2017}$=-1.
故选:B.
点评 本题考查利用导数研究过曲线上某点处的切线方程,训练了对数的运算性质,考查转化思想和运算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com