精英家教网 > 高中数学 > 题目详情
16.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2017x1+log2017x2+…+log2017x2016的值为(  )
A.-log20172016B.-1C.log20172016-1D.1

分析 求出函数y=xn+1(n∈N*)的导数,可得切线的斜率,由点斜式方程可得在(1,1)处的切线方程,取y=0求得xn,然后利用对数的运算性质得答案.

解答 解:由y=xn+1,得y′=(n+1)xn,∴y′|x=1=n+1,
∴曲线y=xn+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1),
取y=0,得xn=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴x1x2…x2016=$\frac{1}{2}$×$\frac{2}{3}$×…×$\frac{2016}{2017}$=$\frac{1}{2017}$,
则log2017x1+log2017x2+…+log2017x2016=log2017(x1x2…x2016
=log2017$\frac{1}{2017}$=-1.
故选:B.

点评 本题考查利用导数研究过曲线上某点处的切线方程,训练了对数的运算性质,考查转化思想和运算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{5},x∈[-1,1]}\\{x,x∈[1,π)}\\{sinx,x∈[π,3π]}\end{array}\right.$求f(x)在区间[-1,3π]上的定积分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.角α的终边在第二象限,那么$\frac{α}{3}$的终边不可能在的象限是第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y∈R,i是虚数单位,且(2x+i)(1-i)=y,则y的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设A,B是球O的球面上两点,∠AOB=$\frac{π}{3}$,C是球面上的动点,若四面体OABC的体积V的最大值为$\frac{9\sqrt{3}}{4}$,则此时球的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在复平面内,复数i(2+i)对应的点的坐标为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y=tan(\frac{π}{4}-2x)$的定义域为{x|x≠$\frac{kπ}{2}$+$\frac{3}{8}$π,k∈z}.

查看答案和解析>>

同步练习册答案