精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣ (m∈R)在区间[1,e]取得最小值4,则m=

【答案】﹣3e
【解析】解:函数 的定义域为(0,+∞),

当f′(x)=0时, ,此时x=﹣m,如果m≥0,则无解.
所以,当m≥0时,f′(x)>0,f(x)为增函数,所以f(x)min=f(1)=﹣m=4,m=﹣4,矛盾舍去;
当m<0时,
若x∈(0,﹣m),f′(x)<0,f(x)为减函数,若x∈(﹣m,+∞),f′(x)>0,f(x)为增函数,
所以f(﹣m)=ln(﹣m)+1为极小值,也是最小值;
①当﹣m<1,即﹣1<m<0时,f(x)在[1,e]上单调递增,所以f(x)min=f(1)=﹣m=4,所以m=﹣4(矛盾);
②当﹣m>e,即m<﹣e时,f(x)在[1,e]上单调递减,f(x)min=f(e)=1﹣ =4.所以m=﹣3e.
③当﹣1≤﹣m≤e,即﹣e≤m≤1时,f(x)在[1,e]上的最小值为f(﹣m)=ln(﹣m)+1=4.此时m=﹣e3<﹣e(矛盾).
综上m=﹣3e.
求出函数的导函数,然后分m的范围讨论函数的单调性,根据函数的单调性求出函数的最小值,利用最小值等于4求m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知常数,在数列中,首项是其前项和,且.

1)设,证明数列是等比数列,并求出的通项公式;

2)设,证明数列是等差数列,并求出的通项公式;

3)若当且仅当时,数列取到最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:

收看时间

(单位:小时)

14

28

20

12

(1)若将每天收看比赛转播时间不低于3小时的教职工定义为球迷,否则定义为非球迷,请根据频数分布表补全列联表:

合计

球迷

40

非球迷

合计

并判断能否有90%的把握认为该校教职工是否为球迷性别有关;

(2)在全校球迷中按性别分层抽样抽取6名,再从这6球迷中选取2名世界杯知识讲座.记其中女职工的人数为,求的分布列与数学期望.

附表及公式:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,则下列说法不正确的是( )

A.其图象开口向上,且始终与轴有两个不同的交点

B.无论取何实数,其图象始终过定点

C.其图象对称轴的位置没有确定,但其形状不会因的取值不同而改变

D.函数的最小值大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2 015年11月份的高三期中考试后,随机地抽取了50名学生的数学成绩并进行了分析,结果这50名同学的成绩全部介于80分到140分之间.现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如图所示的频率分布直方图.

(1)试估计该校数学的平均成绩(同一组中的数据用该区间的中点值作代表);
(2)这50名学生中成绩在120分以上的同学中任意抽取3人,该3人在130分(含130分)以上的人数记为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,该椭圆中心到直线的距离为.

(1)求椭圆的方程;

(2)是否存在过点的直线,使直线与椭圆交于两点,且以为直径的圆过定点?若存在,求出所有符合条件的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案