精英家教网 > 高中数学 > 题目详情

已知函数,若函数处的切线方程为
(1)求的值;
(2)求函数的单调区间。

(1)
(2)的单调增区间为;减区间为(

解析试题分析:(1)根据题意,由于函数,那么函数处的切线方程为,可知
(2)由上可知,,那么可知,当y’>0,得到函数的增区间为,当y’<0时,得到的函数的减区间为
考点:导数的运用
点评:主要是考查了导数在研究函数单调性中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 .
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若且对任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.(的图象连续不断)
(1) 求的单调区间;
(2) 当时,证明:存在,使
(3) 若存在属于区间,且,使,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数的图像与函数的图像关于点对称.
(1)求函数的解析式;
(2)若关于的方程有两个不同的正数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线  在点  处的切线  平行直线,且点在第三象限.
(Ⅰ)求的坐标;
(Ⅱ)若直线  , 且  也过切点 ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数的值域为,求的值;
(Ⅱ)若函数的函数值均为非负数,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(为实常数)
(1)若,将写出分段函数的形式,并画出简图,指出其单调递减区间;
(2)设在区间上的最小值为,求的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在下列定义域内的值域。
(1)函数y=f(x)的值域
(2)(其中)函数y=f(x)的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上奇函数与偶函数,对任意满足+a为实数
(1)求奇函数和偶函数的表达式
(2)若a>2, 求函数在区间上的最值

查看答案和解析>>

同步练习册答案