精英家教网 > 高中数学 > 题目详情
8、用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有(  )
分析:当1,5,9,为其中一种颜色时,2,6共有4种可能,其中2种2,6是涂相同颜色,各有2种可能共6种可能.4,8及7,与2,6及3,一样有6种可能并且与2,6,3,颜色无关,当1,5,9换其他的颜色时也是相同的情况,相乘得到结果.
解答:解:首先看图形中的1,5,9,有3种可能,
 当1,5,9,为其中一种颜色时,
2,6共有4种可能,其中2种2,6是涂相同颜色,各有2种可能共6种可能.
4,8及7,与2,6及3,一样有6种可能并且与2,6,3,颜色无关.
当1,5,9换其他的颜色时也是相同的情况
符合条件的所有涂法共有3×6×6=108种,
故选A.
点评:本题考查分别计数原理,考查分类原理,是一个限制元素比较多的题目,解题时注意分类,做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下表),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有
108
种.
1 2 3
4 5 6
7 8 9

查看答案和解析>>

科目:高中数学 来源: 题型:

朵朵小朋友用红、黄、蓝三种颜色的彩笔给下列三个图形随机涂色,每个图形只涂一种颜色,求:
(Ⅰ)三个图形颜色不全相同的概率;
(Ⅱ)三个图形颜色恰有两个相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)用红、黄、蓝三种颜色分别去涂图中标号为1,2,3,…9的个9小正方形(如图),需满足任意相邻(有公共边的)小正方形涂颜色都不相同,且标号“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法中,恰好满足“1、3、5、7、9”为同一颜色,“2、4、6、8”为同一颜色的概率为
1
18
1
18

1 2 3
4 5 6
7 8 9

查看答案和解析>>

科目:高中数学 来源: 题型:

用红、黄、蓝三种颜色去涂图中标号为1,2,3,…,9的9个小正方形,使得任意相邻(由公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的涂法共有
 
种.
1 2 3
4 5 6
7 8 9

查看答案和解析>>

同步练习册答案