精英家教网 > 高中数学 > 题目详情
若数列{an}的通项公式为an=n2+n+1,则273是这个数列的第
 
项.
考点:数列的概念及简单表示法
专题:等差数列与等比数列
分析:令an=n2+n+1=273,解出n即可得出.
解答: 解:令an=n2+n+1=273,解出n=16.
故答案为:16.
点评:本题考查了数列的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+y2=1(a>0)的两个焦点是F1(-c,0)或F2(c,0)(c>0),且椭圆C上的点到焦点F2的最短距离为
3
-
2

(1)求椭圆的方程;
(2)过点(0,
2
)且斜率k为的直线l与椭圆C交于不同的两点P,Q,设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在k,使得向量
OP
+
OQ
AB
共线?若存在,试求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=
x+4
x-2
在区间(a,b)上的值域是(2,+∞),则logab=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=1,其前n项和Sn满足
Sn+4+Sn
2
=Sn+2+4(n∈N+).
(1)求数列{an}的通项公式;
(2)令bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinx-
3
cosx(x∈[0,2π]),求单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,a2=4,a5=10;数列{bn}的前n项和是Tn,且Tn+
1
2
bn=1.
(1)求证:数列{bn}是等比数列;
(2)记cn=an.bn,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin
π
6
-
3
sin2ωx-
1
2
sin2ωx(ω>0),q且y=f(x)的最小正周期为π.
(Ⅰ)求f(
π
2
)的值;
(Ⅱ)求f(x)在区间[π,
2
]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两非零向量
a
=(a1b1)
b
=(a2b2)
,其中a1,a2,b1,b2均为实数,集合A={x|a1x+b1≥0},集合B={x|a2x+b2≥0},则“
a
b
”是“A=B”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
(1)cos2α=
1-tan2α
1+tan2α

(2)sin2α=
2tanα
1+tan2a

查看答案和解析>>

同步练习册答案