精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中, 是边长为4的正方形.平面⊥平面 .

(1)求证: ⊥平面ABC;

(2)求二面角的余弦值;

(3)证明:在线段存在点,使得,并求的值.

【答案】(1)见解析(2)(3)

【解析】试题分析:(1)由题意,可根据面面垂直的性质定理进行证明,因为平面垂直于平面,且交线为,又,从而问题可得证;在(2)、(3)由题意,可采用坐标法,再通过向量的共线、垂直关系,以及数量积等的运算,从而问题可得解.

试题解析:(1)证明 在正方形中, .

又平面平面,且平面平面

平面.

(2)解:由(1)知 ,由题意知,

中,

.

∴以A为坐标原点,建立如图所示空间直角坐标系A-xyz.

于是

设平面法向量为

与平面所成角正弦值为.

(3)假设存在点是直线上一点,使,且.

,解得

,∴0+3(3-3λ)-16λ=0,解得

因为,所以在线段上存在点D,使得.此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆满足:①圆心在第一象限,截轴所得弦长为2;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过点分别做圆的两条切线,切点分别为 ,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系椭圆)的离心率是抛物线的焦点的一个顶点

(1)求椭圆的方程

(2)设上的动点且位于第一象限在点处的切线交于不同的两点线段的中点为直线与过且垂直于轴的直线交于点

(i)求证:点在定直线上

(ii)直线轴交于点记△的面积为的面积为的最大值及取得最大值时点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,,

,侧棱底面.

I)证明:平面平面

II)若直线与平面所成的角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若满足:对任意的,都有恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图,在正方体中, 分别是的中点.

(1)求证:平面平面

(2)在棱上是存在一点,使得平面,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调递减区间;

(2)求函数在区间上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方,且.

1求椭圆的方程;

2为椭圆与轴正半轴的交点时,求直线方程;

3对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且

(1)求角C的大小;

(2)若 ,且三角形ABC的面积为,求的值.

查看答案和解析>>

同步练习册答案