【题目】已知函数f(x)=2 sin(x+)。
(1)若点P(1,-)在角的终边上,求:cos和f(-)的值;
(2)若x [, ],求f(x)的值域。
【答案】(1) , - (2) [-1,2]
【解析】试题分析: (1)因为点P(1,-)在角的终边上,所以sin=,cos=,再代入f(-)求值即可;(2) 令t=x+,则原函数化为g(t)=2 sint, x [, ],所以≤t≤,根据正弦函数的单调性求出函数的值域.
试题解析:
(1)因为点P(1,-)在角的终边上,所以sin=,cos=。
所以f(-)=2 sin(-+)=2 sin=2×(-)=-。
(2)令t=x+,则原函数化为g(t)=2 sint。
因为x [, ],所以≤t≤,
注意到y=sin t在[, ]单增,在[, ]单减,
且ymax=g()=2 sin=2,
而g()=2 sin()=-1,g()=2 sin()=2×=>-1,
即f(x)的值域为[-1,2]。
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|,a<0.
(Ⅰ)证明f(x)+f(﹣ )≥2;
(Ⅱ)若不等式f(x)+f(2x)< 的解集非空,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有如下性质:该函数在上是减函数,在上是增函数.
(1)已知,利用上述性质,求函数的单调区间和值域;
(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2 , 且x1∈(0, ),求证:h(x1)﹣h(x2)> ﹣ln2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交的作品的件数按5天一组分组统计,绘制了频率分布直方图,如图所示,已知从左到右各长方形的高的比为2 : 3 : 4 : 6 : 4 :1,第三组的频数为12.
(1)求本次活动参加评比的作品的件数;
(2)哪组上交的作品数量最多,有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A , B , C的对边分别为a , b , c , cos = .
(1)求cosB的值;
(2)若 ,b=2 ,求a和c的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com