【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标系方程是 ,正方形ABCD的顶点都在C1上,且A,B,C,D依逆时针次序排列,点A的极坐标为 .
(1)求点A,B,C,D的直角坐标;
(2)设P为C2上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的最大值.
【答案】
(1)解:曲线C1的普通方程是x2+y2=4,极坐标方程是ρ=2.
∴点A,B,C,D的极坐标为 ,
从而点A,B,C,D的直角坐标为 .
(2)解:曲线C2的极坐标系方程是 ,两边平方可得:ρ2(4+5sin2θ)=36,可得直角坐标方程:4x2+9y2=36,即曲线C2的直角坐标方程是 ,其参数方程是 ,(θ为参数).
故可设P(3cosθ,2sinθ)其中θ为参数.
∴t=|PA|2+|PB|2+|PC|2+|PD|2=36cos2θ+16sin2θ+16=32+20cos2θ,
∴|PA|2+|PB|2+|PC|2+|PD|2的最大值为52.
【解析】(1)曲线C1的普通方程是x2+y2=4,极坐标方程是ρ=2.即可得出点A,B,C,D的极坐标.(2)曲线C2的极坐标系方程是 ,两边平方可得:ρ2(4+5sin2θ)=36,利用ρ2=x2+y2 , y=ρsinθ可得直角坐标方程,可得参数方程是 ,(θ为参数).故可设P(3cosθ,2sinθ)其中θ为参数.利用两点之间的距离公式可得t=|PA|2+|PB|2+|PC|2+|PD|2=32+20cos2θ,即可得出.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断并证明函数的奇偶性;
(2)判断当时函数的单调性,并用定义证明;
(3)若定义域为,解不等式.
【答案】(1)奇函数(2)增函数(3)
【解析】试题分析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。(2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-1,1)为单调函数,
原不等式变形为f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。
试题解析:(1)函数为奇函数.证明如下:
定义域为
又
为奇函数
(2)函数在(-1,1)为单调函数.证明如下:
任取,则
,
即
故在(-1,1)上为增函数
(3)由(1)、(2)可得
则
解得:
所以,原不等式的解集为
【点睛】
(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。
【题型】解答题
【结束】
22
【题目】已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关系式中正确的是( )
A. sin11°<cos10°<sin168° B. sin168°<sin11°<cos10°
C. sin11°<sin168°<cos10° D. sin168°<cos10°<sin11°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,正方形所在的平面与正三角形ABC所在的平面互相垂直, ,且, 是的中点.
(1)求证: ∥平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,SA=SB=AB=BC=CA=6,且侧面ASB⊥底面ABC,则三棱锥S-ABC外接球的表面积为( )
A. 60π B. 56π C. 52π D. 48π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=-3x2+a(6-a)x+6.
(1)解关于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集为(-1,3),求实数a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角.
(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;
(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的标准方程是,
(1)求它的焦点坐标和准线方程.
(2)直线L过已知抛物线的焦点且倾斜角为,并与抛物线相交于A、B两点,求弦AB的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com