精英家教网 > 高中数学 > 题目详情
圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为    
【答案】分析:只有三角形的一条边过圆心,才能组成直角三角形,在圆周上有2n个等分点共有n条直径,每条直径可以和除去本身的两个定点外的点组成直角三角形,可做2n-2个直角三角形,根据分步计数原理得到n条直径共组成的三角形数.
解答:解:由题意知,只有三角形的一条边过圆心,才能组成直角三角形,
∵圆周上有2n个等分点
∴共有n条直径,
每条直径可以和除去本身的两个定点外的点组成直角三角形,
∴可做2n-2个直角三角形,
根据分步计数原理知共有n(2n-2)=2n(n-1)个.
故答案为:2n(n-1)
点评:本题考查分步计数原理,考查圆的有关问题,是一个综合题,解题的关键是对于圆上的点,怎样能组成直角三角形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为
2n(n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.

查看答案和解析>>

同步练习册答案