【题目】若函数.
(1)讨论的单调性;
(2)若在上恒成立,求实数的取值范围;
(3)求证:对任意的正整数都有,.
【答案】(1)上单调递减,在上单调递增; (2);(3)证明见解析
【解析】
(1)求导后,令可确定其在范围内的根,进而得到导函数的正负,从而得到原函数的单调性;
(2)将恒成立的不等式转化为,令,则只需,利用导数可求得,进而得到结果;
(3)取,结合(2)的结论可得,根据可裂项相加证得结论.
(1)由题意得:定义域为,,
设,,
有两个根,设为,且,
,,,则,
当时,;当时,,
在上单调递减,在上单调递增.
(2),,又,,
设,,
令,则,在上单调递减,
又,则当时,;当时,,
在上单调递增,在上单调递减,,
恒成立即,即的取值范围为.
(3)取,由(2)知:,,
当时,,,;
取,得;取,得;……;取,得;
将这个式子相加得:.
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )
(参考数据:)
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①命题“若,则”的逆否命题;
②“,使得”的否定是:“,均有”;
③命题“”是“”的充分不必要条件;
④:,:,且为真命题.
其中真命题的序号是________.(填写所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某芯片所获订单(亿件)与生产精度(纳米)线性相关,该芯片的合格率与生产精度(纳米)也线性相关,并由下表中的5组数据得到,与满足线性回归方程为:.
精度(纳米) | 16 | 14 | 10 | 7 | 3 |
订单(亿件) | 7 | 9 | 12 | 14.5 | 17.5 |
合格率 | 0.99 | 0.98 | 0.95 | 0.93 |
(1)求变量与的线性回归方程,并预测生产精度为1纳米时该芯片的订单(亿件);
(2)若某工厂生产该芯片的精度为3纳米时,每件产品的合格率为,且各件产品是否合格相互独立.该芯片生产后成盒包装,每盒100件,每一盒产品在交付用户之前要对产品做检验,如检验出不合格品,则更换为合格品.现对一盒产品检验了10件,结果恰有一件不合格,已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格产品支付200元的赔偿费用.若不对该盒余下的产品检验,这一盒产品的检验费用与赔偿费用的和记为,以为决策依据,判断是否该对这盒余下的所有产品作检验?
(参考公式:,)
(参考数据:;)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】莱昂哈德·欧拉,瑞士数学家、自然科学家.岁时入读巴塞尔大学,岁大学毕业,岁获得硕士学位,他是数学史上最多产的数学家.其中之一就是他发现并证明欧拉公式,从而建立了三角函数和指数函数的关系.若将其中的取作就得到了欧拉恒等式,它是数学里令人着迷的一个公式,它将数学里最重要的几个量联系起来:两个超越数:自然对数的底数,圆周率;两个单位:虚数单位和自然数单位;以及被称为人类伟大发现之一的,数学家评价它是“上帝创造的公式”请你根据欧拉公式:,解决以下问题:
(1)试将复数写成(、,是虚数单位)的形式;
(2)试求复数的模.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com