精英家教网 > 高中数学 > 题目详情
8.圆台的上下底面半径和高的比为1:4:4,母线长为10,则其表面积为168π.
(参考公式:圆台表面积S=π(r′2+r2+r′l+rl),其中r′,r分别为圆台的上、下底面半径,l为母线长.)

分析 根据题意画出图形,结合图形求出圆台的上下底面半径和高以及母线长,即可求出它的表面积.

解答 解:设圆台的上底半径为x,则下底半径与高都是4x,如图所示:

又母线长为10,
所以16x2+9x2=100,解得x=2;
所以圆台的上底面半径是2,下底面半径是8,侧棱长为10;
所以它的表面积是4π+64π+$\frac{1}{2}$×10×(4π+16π)=168π.
故答案为:168π.

点评 本题考查了圆台的表面积公式的应用问题,解题时应画出图形,结合图形求出它的上、下底面的半径与母线长,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若0<x<y<1,0<a<1,则下列不等式正确的是(  )
A.3logax<logay2B.cosax<cosayC.ax<ayD.xa<ya

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={-1,1},则集合A的子集共有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.命题“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”
B.命题“若xy=0,则x=0或y=0”的否命题为“若xy≠0则x≠0或y≠0”
C.若命题p,¬q都是真命题,则命题“p∧q”为真命题
D.“x=-1”是“x2-5x-6=0”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知:定义在R上的二次函数f(x)满足:f(1)=f(3),f(x)min=1,f(0)=5.
(1)求f(x)的表达式;
(2)求满足f(a)<2时,实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应是从集合S到T的映射的是(  )
A.S=N,T={-1,1},对应法则是n→(-1)n,n∈S
B.S={x|x∈R},T={y|y∈R},对应法则是x→y=$\frac{1+x}{1-x}$
C.S={0,1,2,5},T={1,$\frac{1}{2}$,$\frac{1}{5}$},对应法则是取倒数
D.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},对应法则是开平方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设p:函数f(x)=log2(ax2-x+a)的值域为R,q:(log2x)2-4log2x+a+2≥0对x∈[$\frac{1}{4}$,1]恒成立,若p且q为假,p或q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正四面体ABCD的棱长为9,点P是三角形ABC内(含边界)的一个动点满足P到面DAB、面DBC、面DCA的距离成等差数列,则点P到面DCA的距离最大值为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=1+tsinα}\end{array}\right.$其中t为参数,0≤α<π,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ+3=0.
(1)求直线l与曲线C的普通方程;
(2)求曲线C上的点到直线l上点的最大距离.

查看答案和解析>>

同步练习册答案