A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 根据正态总体的概率密度函数的意义即可得出X的期望和标准差,再由概率分布的对称特点,即可得到答案.
解答 解:∵正态总体的概率密度函数为f(x)=$\frac{1}{\sqrt{2π}}$e${\;}^{\frac{-(x-2)^{2}}{2}}$(x∈R),
∴总体X的期望μ为2,标准差为1,
故f(x)的图象关于直线x=2对称,
∵${∫}_{0}^{2}$f(x)dx=$\frac{1}{3}$,
∴P(X>4)=$\frac{1}{2}-\frac{1}{3}$=$\frac{1}{6}$,
故选:A.
点评 本题考查正态分布的有关知识,同时考查概率分布的对称性及运算能力,正确理解正态总体的概率密度函数中参数μ、θ的意义是关键.
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{\sqrt{3}}{3}$) | B. | (0,$\frac{\sqrt{2}}{2}$) | C. | ($\frac{\sqrt{3}}{3}$,1) | D. | ($\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{a}$+$\frac{1}{b}$>2$\sqrt{\frac{1}{ab}}$ | B. | ${a^{{-_{\;}}\frac{1}{2}}}>{b^{{-_{\;}}\frac{1}{2}}}$ | C. | ln(a-b)>0 | D. | 0.3a>0.3b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com