分析 根据题意和韦达定理列出方程组,由平方关系化简联立列方程,求出k的值,最后要验证三角函数值的范围,即可求k,α..
解答 解:∵sinα和cosα是方程x2-kx+k+1=0的两根,
∴sinα+cosα=k,sinαcosα=k+1,
①平方得,1+2sinαcosα=k2,将②代入得,
k2-2k-3=0,解得k=3或-1,
当k=3时,sinαcosα=4,这与sinαcosα<1矛盾,故舍去,
当k=-1时,经验证符合条件.
∴sinα+cosα=-1,sinαcosα=0,
∵π<α<2π,
∴$α=\frac{3π}{2}$.
点评 本题考查了韦达定理(根与系数的关系),以及平方关系的灵活应用,主要验证三角函数值的范围.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com