精英家教网 > 高中数学 > 题目详情

【题目】某校为了了解两班学生寒假期间观看《中国诗词大会》的时长,分别从这两个班中随机抽取5名学生进行调查,将他们观看的时长(单位:小时)作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;

(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率.

【答案】(1)班学生平均观看时间较长;(2).

【解析】试题分析: (1)先根据平均数等于总数除以样本个数,计算两班平均值,再比较大小即可,(2)利用枚举法计算样本总数为9种,再从中计算满足的样本数,最后根据古典概型概率公式求概率.

试题解析:(1)班样本数据的平均值为

由此估计班学生平均观看时间大约为17小时,

班样本数据的平均值为

由此估计班学生平均观看时间较长.

(2)班的样本数据中不超过19的数据有3个,分别为:9,11,14,

班的样本数据中不超过21的数据有3个,分别为:11,12,21,

班和班的样本数据中各随机抽取一个共有9种不同情况,分别为:

其中的情况有两种,

的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对辆车的速度进行取样,测量的车速制成如下条形图:

经计算:样本的平均值,标准差,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于是需矫正速度.

(1)从该快速车道上所有车辆中任取个,求该车辆是需矫正速度的概率;

(2)从样本中任取个车辆,求这个车辆均是需矫正速度的概率;

(3)从该快速车道上所有车辆中任取个,记其中是需矫正速度的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,下图为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.

(1)求出

(2)利用合情推理的“归纳推理思想”归纳出的关系式,

(3)根据你得到的关系式求的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品上市30天内每件的销售价格元与时间天函数关系是

该商品的日销售量件与时间天函数关系是

.(1)求该商品上市第20天的日销售金额;

(2)求这个商品的日销售金额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知△ABC中,∠ACB=90°,SA⊥平面ABCADSC,求证:AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,判断函数的单调性;

(2)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数,).(Ⅰ)求函数的单调区间;(Ⅱ)当时,是否存在实数,使得当时,不等式恒成立?如果存在,求的取值范围;如果不存在,请说明理由(其中是自然对数的底数,).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盐化某厂决定采用以下方式对某块盐池进行开采:每天开采的量比上一天减少,10天后总量变为原来的一半,为了维持生态平衡,剩余总量至少要保留原来的,已知到今天为止,剩余的总量是原来的

(1)求的值;

(2)到今天为止,工厂已经开采了几天?

(3)今后最多还能再开采多少天?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB的中点,且△PDB是正三角形,PA⊥PC.

(1)求证:平面PAC⊥平面ABC.

(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

同步练习册答案