精英家教网 > 高中数学 > 题目详情
4.当自变量x满足-1≤x≤2时,函数y=(m+1)x+4m-3>0恒成立,求实数m的取值范围.

分析 由一次函数的单调性,可得,-(m+1)+4m-3>0,且2(m+1)+4m-3>0,解不等式即可得到m的范围.

解答 解:由题意可得,-(m+1)+4m-3>0,
且2(m+1)+4m-3>0,
即有m>$\frac{4}{3}$且m>$\frac{1}{6}$,
解得m>$\frac{4}{3}$.
则实数m的取值范围为($\frac{4}{3}$,+∞).

点评 本题考查不等式恒成立问题的解法,注意运用函数的单调性,解不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,那么|$\overrightarrow{a}$+$\overrightarrow{b}$||$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)是定义在R上的减函数,且对任意实数x,y都有f(x+y)=f(x)+f(y).
(1)求f(0)的值; 
(2)求证f(x)是奇函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中a1=1,an+1=an+$\frac{2}{{n}^{2}+2n}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设定义在(-2,2)上的奇函数f(x)在区间(-2,0]上单调递减,且 f(m-1)+f(3m-1)>0,则实数m的取值范围是($-\frac{1}{3}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足a1=$\frac{1}{2}$,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{n!}{4},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商场出售一种产品.每天可卖1000件,每件可获利40元.根据经验,若单价每降低1元,则每天可多卖100件,已知每件产品最高获利不超过40元.
(1)求出总获利f(x)与每件的获利x之间的函数关系式,并写出定义域;
 (2)每件获利应定为多少元时,总获利最大?并求最大获利为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.小明准备参加电工资格证考试,先后进行理论考试和操作考试两个环节,每个环节各有2次考试机会.在理论考试环节,若第1此考试通过,则直接进入操作考试;若第1次未通过,则进行第2次考试,第2次通过后进入操作考试环节,第2次未通过则直接被淘汰.在操作考试环节,若第1次考试通过,则直接获得证书;若第1次为通过,则进行第2此考试,第2次通过后获得证书,第2次未通过则被淘汰.若小明每次理论考试通过的概率为$\frac{3}{4}$,每次操作考试通过的概率为$\frac{2}{3}$,并且每次考试相互独立,则小明本次电工考试中,共参加3次考试的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠C=90°,AD为∠BAC的角平分线,BC=64,BD:DC=9:7.求点D到AB的距离.

查看答案和解析>>

同步练习册答案