精英家教网 > 高中数学 > 题目详情
3.如图,在四棱锥S-ABCD中,底面ABCD是棱长为2的正方形,侧棱$SD=2,SA=2\sqrt{2}$,∠SDC=120°.
(Ⅰ)求证:AD⊥面SDC;
(Ⅱ)求棱SB与面SDC所成角的大小.

分析 (Ⅰ)由SD=2,SA=2$\sqrt{2}$,得AD⊥SD,又AD⊥CD,由线面垂直的判定得AD⊥侧面SDC;
(Ⅱ)证明∠BSC棱SB与面SDC所成角,即可求棱SB与面SDC所成角的大小.

解答 (Ⅰ)证明:∵SD=2,SA=2$\sqrt{2}$,
∴AD⊥SD,
又AD⊥CD,CD?侧面SDC,SD?侧面SDC,且SD∩CD=D,
∴AD⊥侧面SDC;
(Ⅱ)解:∵BC∥AD,AD⊥侧面SDC,
∴∠BSC是棱SB与面SDC所成角.
△SDC中,SD=2,DC=2,∠SDC=120°,∴SC=2$\sqrt{3}$,
△BSC中,tan∠BSC=$\frac{\sqrt{3}}{3}$,∴∠BSC=30°,
∴棱SB与面SDC所成角为30°.

点评 本题主要考查线面垂直,考查线面角的求法,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={x∈Z|x≥2},B={1,2,3},则A∩B=(  )
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知O为椭圆中心,F1为椭圆的左焦点,A,B分别为椭圆的右顶点与上顶点,P为椭圆上一点,若PF1⊥F1A,PO∥AB,则该椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A=[-1,3],B=[m,m+6],m∈R.
(1)当m=2时,求A∩∁RB;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“a=3”是“直线2x+ay+1=0和直线(a-1)x+3y-2=0平行”的充分不必要条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,若函数f(x)=min{x2-3x+3,-|x-3|+3},且f(x)在区间[m,n]上的值域为[$\frac{3}{4}$,$\frac{7}{4}$],则区间[m,n]长度的最大值为(  )
A.1B.$\frac{7}{4}$C.$\frac{11}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗实线画出的某多面体的三视图,则该多面体的体积为(  )
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:x2+2x-8<0,q:(x-1+m)(x-1-m)≤0(m>0).
(1)使p成立的实数x的取值集合记为A,q成立的实数x的取值集合记为B,当m=2时,求A∩B;
(2)若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C:x2+y2=4,则过圆上点$(1,\sqrt{3})$的切线方程是$x+\sqrt{3}y-4=0$.

查看答案和解析>>

同步练习册答案