精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(1-tanx,1),数学公式=(1+sin2x+cos2x,0),记f(x)=数学公式数学公式
(1)求f(x)的解析式并指出它的定义域;
(2)若数学公式,且数学公式,求f(α).

解:(1)∵=(1-tanx,1),=(1+sin2x+cos2x,0),
∴f(x)==(1-tanx)(1+sin2x+cos2x)
==2(cos2x-sin2x)=2cos2x.
定义域为
(2)因,即>0,
为锐角,于是

∴f(α)===


分析:(1)利用向量=(1-tanx,1),=(1+sin2x+cos2x,0),求出f(x)=,化简为一个角的一个三角函数的形式,就是f(x)的解析式,指出它的定义域;
(2)利用,代入函数表达式,根据,求出,然后求f(α).
点评:第(1)问中,必须注意tanx中x的条件限制.第(2)中,学生常会将“”展开,并结合cos22α+sin22α=1,求解方程组,求cos2α的值.但三角恒等变换中,“三变”应加强必要的训练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足
a
+
b
+
c
=0,|c|=2
3
c
a
-
b
所成的角为120°,则当t∈R时,|t
a
+(1-t)
b
|的取值范围是
[
3
2
,+∞)
[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a,b满足|a|=2,|b|=1,a与b的夹角为
π3

(1)求|a+2b|;
(2)若向量a+2b与ta+b垂直,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
n
的夹角为45°,则|
m
|=1,|
n
|=
2
,又
a
=2
m
+
n
b
=-3
m
+
n

(1)求
a
b
的夹角;
(2)设
c
=t
a
-
b
d
=2
m
-
n
,若
c
d
,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为60°,且|
a
|=1,|
b
|=2
,设
m
=3
a
-
b
n
=t
a
+2
b

(1)求
a
b
;  (2)试用t来表示
m
n
的值;(3)若
m
n
的夹角为钝角,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(-1,2),且
m
=t
a
+
b
n
=
a
-k
b
(t、k∈R),则
m
n
的充要条件是(  )

查看答案和解析>>

同步练习册答案