精英家教网 > 高中数学 > 题目详情

椭圆C:  +=1(a>b>0)的离心率e=,a+b=3.

(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明2m-k为定值.

(1) +y2=1   (2)见解析

解析(1)解:因为e==,
所以a=c,b=c.
代入a+b=3,
得c=,a=2,b=1.
故椭圆C的方程为+y2=1.
(2)证明:因为B(2,0),P不为椭圆顶点,
则直线BP的方程为y=k(x-2)(k≠0,k≠±),          ①
把①代入+y2=1,
解得P.
直线AD的方程为y=x+1.②
①与②联立解得M.
由D(0,1),P,N(x,0)三点共线知
=,
解得N.
所以MN的斜率为m=
=
=,
则2m-k=-k=(定值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线与抛物线没有交点;方程表示椭圆;若为真命题,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内与两定点)连线的斜率之积等于非零常数m的点的轨迹,加上两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m值得关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽    m.

查看答案和解析>>

同步练习册答案